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A scroll wave in a very thin layer of excitable medium is similar to a spiral wave, but its behavior is
affected by the layer geometry. We identify the effect of sharp variations of the layer thickness, which is
separate from filament tension and curvature-induced drifts described earlier. We outline a two-step
asymptotic theory describing this effect, including asymptotics in the layer thickness and calculation of the
drift of so-perturbed spiral waves using response functions. As specific examples, we consider drift of
scrolls along thickness steps, ridges, ditches, and disk-shaped thickness variations. Asymptotic predictions
agree with numerical simulations.
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Spiral waves in two dimensions (2D) and scroll waves in
three dimensions (3D) are regimes of self-organization
observed in physical, chemical, and biological spatially
extended dissipative systems with excitable or self-
oscillatory properties [1]. A particularly important example
is the reentrant waves of excitation underlying arrhythmias
in the heart [2]. In nature, 2D systems often are very thin 3D
layers of the medium, so the dynamic fields vary only
slightly in the transmural direction. The geometry of a layer
affects the dynamics of scroll waves via the well-known
phenomena of scroll wave filament tension [3] and surface
curvature of the layer [4], which cause scroll waves to drift
to or from thinner regions and more curved regions,
respectively. There are, however, effects not reducible to
these phenomena and rather related to sharp features of the
layer thickness. Figure 1 shows a paradoxical example of a
scroll wave with a positive filament tension first attracted
towards the thicker part of the layer and then drifting along
the thickness step. There is experimental evidence that
sharp thickness variations can play a significant role in
atrial fibrillation [5,6].
In this Letter, we present an asymptotic theory of drift of

scroll waves caused by variations of layer thickness.
Predictions of this theory are quantitatively confirmed by
direct numerical simulations for two selected archetypical
models, one excitable and one self-oscillatory. We demon-
strate that sharp variations can produce drifts that are not
reducible to filament tension and surface curvature. The
details of these drifts depend on the reaction-diffusion
kinetics, as well as the size, geometry, and position of the
thickness feature. A typicalmotif, observed for both selected
models, is that a scroll is first attracted towards a sharp
thickness variation and then drifts along or around it.
We start from a generic homogeneous isotropic reaction-

diffusion system in 3D,

vt ¼ fðvÞ þD∇2v; ð1Þ

where v ¼ ½uð~r; tÞ; vð~r; tÞ�T , ~r ¼ ðx; y; zÞ. In numerical
examples, we use the excitable FitzHugh-Nagumo
(FHN) system [8], with kinetics

f∶
�
u

v

�
↦

�
α−1ðu − u3=3 − vÞ
αðuþ β − γvÞ

�
ð2Þ

for α ¼ 0.3, β ¼ 0.68, γ ¼ 0.5, and D ¼ diagð1; 0Þ, and
the self-oscillatory Oregonator model of the Belousov-
Zhabotinsky reaction [9], with kinetics

f∶
�
u

v

�
↦

�
p−1ðuð1 − uÞ − fv u−q

uþqÞ
u − v

�
ð3Þ

for p ¼ 0.1, f ¼ 1.5, q ¼ 0.002, andD ¼ diagð1; 0.6Þ (see
the Supplemental Material [7]).
We consider the system of Eq. (1) in a thin layer,

z ∈ ½zminðx; yÞ; zmaxðx; yÞ�, ðx; yÞ ∈ R2, with no-flux
boundaries at z ¼ zmin and z ¼ zmax. Let Hðx; yÞ≡
zmaxðx; yÞ − zminðx; yÞ and 0 < Hðx; yÞ ≤ μ ≪ 1. Then,

FIG. 1 (color online). Surface view of a scroll wave in a thin
layer of excitable medium described by the FitzHugh-Nagumo
system [Eqs. (1), (2)], with a stepwise variation of thickness. The
white curve is the trace of the vortex filament appearing at the top
surface (Supplemental Material [7]).
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vðx; y; z; tÞ ¼ uðx; y; tÞ þOðμ2Þ (Supplemental Material
[7]), and Eq. (1) in the leading order in μ reduces to the
following 2D approximation:

ut ¼ fðuÞ þ D
1

Hðx; yÞ∇ · ½Hðx; yÞ∇u� þOðμ2Þ: ð4Þ

We rewrite Eq. (4) in the form

ut ¼ fðuÞ þD∇2uþ ϵhðu; x; y;∇Þ ð5Þ

where

ϵh ¼ ϵDð∇KÞ · ð∇uÞ; ϵK ¼ lnH: ð6Þ

Equations (5) and (6) will be treated as a perturbation
problem with the formal small parameter ϵ, distinct from
the small parameter μ. So, for Eq. (5) we assume the
existence of a rigidly rotating spiral wave solution U
at ϵ ¼ 0.
In what follows, we explicitly calculate scroll wave drift

for three given geometries corresponding to abrupt changes
in domain thickness, i.e., a thickness step, ditch, and
circular bulge. First, we consider a step in thickness, as
in Fig. 1,

Hðx; yÞ ¼
�
Hþ; x > xs;

H−; x < xs:
ð7Þ

Since K ¼ KðxÞ, one has ϵh ¼ ϵDKxux. With Θ, the
Heaviside step function, we have ϵK ¼ lnðH−Þ þ
ϵΘðx − xsÞ, ϵ ¼ lnðHþ=H−Þ, such that

ϵh ¼ ϵδðx − xsÞDux: ð8Þ

Equations (12), (13), and (14) of Ref. [10] predict the

drift velocity ϵFð~RÞ ¼ ϵðFx þ iFyÞ as overlap integrals of
translational response functions

d~R
dt

¼ ϵ~Fð~RÞ ¼ ϵðFx; FyÞ; ð9Þ

Fð~RÞ ¼
Z

∞

0

I
Wðr; θÞ†αðr; θ; ~RÞdθrdr; ð10Þ

αðr; θ; ~RÞ ¼
I

e−iϕ ~hðU; r; θ;ϕÞ dϕ
2π

; ð11Þ

where ~h is the perturbation h, calculated for u ¼ U and
considered in the frame corotating with the spiral, W are
(translational) response functions of the spirals, and †
stands for conjugate transposed. Counterclockwise rotating
spirals and their response functions calculated for the
two selected models using DXSPIRAL [11] (Supplemental
Material [7]) are illustrated in Fig. 5 in Ref. [7]; change of

chirality of the spirals corresponds to complex conjugation
of W, α, and F. Evaluation of the integral of Eq. (11)
with an account of Eq. (8) and the coordinate trans-
formations hð~R;tÞ¼ ~hðr;θ;ϕÞ, ~R ¼ ðX; YÞ, ~r ¼ ðx; yÞ,
d ¼ X − xs, θ ¼ ϑð~r − ~RÞ þ ϕ, r ¼ ρð~r − ~RÞ, xþ iy ≡
ρð~rÞ exp½iϑð~rÞ� gives

α ¼
(
0; r ≤ jdj;
De−iθ

π
ffiffiffiffiffiffiffiffiffi
r2−d2

p
h
d2

r2 Ur −
iðr2−d2Þ

r3 Uθ

i
; r > jdj: ð12Þ

Equations (10) and (12) define the specific force produced
by the thickness step, which depends only on the distance
between the current spiral center and the step and is an even
function about the position of the step,

Fð~RÞ ¼ SðdÞ; d≡ X − xs; ð13Þ

Sð−dÞ ¼ SðdÞ ¼ SxðdÞ þ iSyðdÞ: ð14Þ

The components of the function SðdÞ for the two selected
models are shown in Figs. 2(b) and 2(e). An important
feature is the zeros of Sx for d ¼ �d� in both models.
Assuming without loss of generality that xs ¼ 0, the drift of
a spiral wave is then described asymptotically by

dX
dt

¼ ϵSxðXÞ;
dY
dt

¼ ϵSyðXÞ; ϵ¼ ln
�
Hþ
H−

�
: ð15Þ

Figure 2 illustrates predictions of the theory for the case of a
thickness step and their comparison with the direct numeri-
cal simulations of both the 2D thickness-reduced system (4)
and the full 3D system (1). Numerical simulations for
both selected models were done with BEATBOX [12]
(Supplemental Material [7]). The relevant attractor for
Eq. (15) is

X ¼ −d�; Y ¼ Y0 þ ϵSyð−d�Þt; ð16Þ

where Sxð−d�Þ ¼ 0, Sx0ð−d�Þ < 0. That is, in both models
the spirals attach to the step at its thinner side and drift
along with the speed jϵSyð−d�Þj. The speed of the drift is
proportional to ϵ ¼ lnðHþ=H−Þ, and the direction of
the drift depends on the spiral chirality: compare
Figs. 2(a) and 2(d).
As a second geometry, let us consider the following

thickness profile: for some xl < xr,

Hðx; yÞ ¼
8<
:

Ho; x < xl;

Hi; xl < x < xr;

Ho; xr < x;

ð17Þ

which means a “ridge” for Hi > Ho and a “ditch” for
Hi < Ho. This case is easily reduced to the previous
because Hðx;yÞ¼HiþðHo−HiÞ½Θðx−xlÞ−Θðx−xrÞ�;
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hence, the formal perturbation is ϵh ¼ ϵ½δðx − xlÞ−
δðx − xrÞ�Dux, where ϵ¼ lnðHi=HoÞ. Let xl ¼ xs − w=2,
xr ¼ xs þ w=2. We use the linearity of Eqs. (9)–(11)
and the previous result to get the interaction force in the
form

Fð~RÞ ¼ Tðd;wÞ ¼ −Tð−d;wÞ; d≡ X − xs; ð18Þ

T ¼ Tx þ iTy ¼ S

�
dþ w

2

�
− S

�
d −

w
2

�
: ð19Þ

Figures 3(a) and 3(b) show the components of Tðd;wÞ
for two selected values of the ridge width w, illustrating a
pitchfork bifurcation of Tx roots. The bifurcation condition
Txðd;wÞ ¼ ∂dTxðd;wÞ ¼ 0, observation that the bifurca-
tion happens at d� ¼ 0 and evenness of SðdÞ gives the
critical value of the width implicitly as the condition
Sx0ðw�=2Þ ¼ 0. For the FHN system, there are two positive
roots for Sx0ð·Þ [see Fig. 2(b)], the smaller giving
w� ≈ 1.769. For a ditch (ϵ < 0), this predicts neutrally
stable equilibria along the middle line of the ditch if w > w�
[Fig. 3(b)] and a drift along either side of the ditch, in one

direction or the other, depending on the initial condition, if
w < w� [Fig. 3(a)].
Figures 3(c) and 3(d) illustrate the drift along a cunei-

form ditch, i.e., a ditch with almost constant but slowly
varying width. The coordinate scale along the ditch is the
same in both panels, with the bifurcation width w�
designated by the dashed horizontal line. We see that
below this line the spiral wave drifts in accordance with the
theory and slows down markedly in the vicinity of this line.
It does not stop completely but proceeds further, albeit at a
much slower speed, which may be seen as a transient
pinning. This slow drift is due to the “wedging” effect of
the varying width: at w ≥ w�, the forces from the two
opposite steps, constituting the banks of the ditch, do not
compensate each other exactly due to the angle between
them. To estimate roughly the associated correction, let
the wedge angle be ψ ≪ 1. Then the wedge-forced com-
ponent of the drift speed at the bifurcation point is
2ϵSxðw�Þ sinðψ=2Þ ≈ ϵSxðw�Þψ . For the simulation shown
in Figs. 3(c) and 3(d), we have ψ ≈ 0.03, and Sxðw�Þ≈
0.4142; hence, the drift speed ϵψSxðw�Þ ≈ 0.002266. This
wedge-forced drift speed is represented by the dotted line in
Fig. 3(d) and agrees well with the simulations. If the initial
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FIG. 2 (color online). Asymptotic theory vs numerical simulations for interaction of a scroll wave with a thickness step, for the
FitzHugh-Nagumo system [panels (a)–(c)] and the Oregonator model [panels (d)–(f)]. [(a), (d)] Spiral wave snapshot (red color
component: u field, green color component: v field, blue color component:H field), with the previous tip path (solid white line) starting
at A, another path starting at a different point (B), and loci d ¼ �d� (dashed yellow lines), in the 2D system (4). [(b), (e)] Components of
the specific force S (14) calculated for counterclockwise spirals. [(c), (f)] Drift speed along the step in the 3D system (1), the 2D system
(4), and the asymptotic predicted by Eq. (16).
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position of the spiral is where w≳ w�, then it undergoes
only the slow, wedge-forced drift from the start
(not shown).
Drift caused by ridge or ditch features may help in

understanding the dynamics of scroll waves in atrial
geometry, for instance, around pectinate muscles [6].
Another feature, specifically analyzed in Ref. [6] by
numerical simulations, was a circular bulge. To see what
our theory can say about that, let us consider, thirdly, a
thickness perturbation of the form

Hðx; yÞ ¼ H0ð1þ ϵΘðR2
d − ðx − xdÞ2 − ðy − ydÞ2ÞÞ;

i.e., thickening (for ϵ > 0) or thinning (for ϵ < 0) in a
disk-shaped area of radius Rd. Then we have

α ¼ eiϑ0e−iθD

πrl
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p
�
ðlκ2 þ rκÞUr −

ilð1 − κ2Þ
r

Uθ

�
ð20Þ

for ~r ∈ ðjRd − lj; Rd þ lÞ, and α ¼ 0 otherwise. Here,
leiϑ0 ¼ ðxd − XÞ þ iðyd − YÞ represents the vector from
the current spiral center ðX; YÞ to the bulge center ðxd; ydÞ,
and κ ¼ ðR2

d − l2 − r2Þ=ð2rlÞ. Hence, the interaction
force is

Fx þ iFy ¼ eiϑ0 ½FrðlÞ þ iFaðlÞ�: ð21Þ

The radial FrðlÞ and the azimuthal FaðlÞ components
calculated for the Oregonator model (3) for an arbitrarily
chosen disk radius Rd are shown in Fig. 4(a). We observe
there is a root of FrðlÞ at l ¼ l� ≈ 4.023 and the
corresponding value of the specific force F�

a ¼ Faðl�Þ ≈
0.1055 predicts long-term behavior of a spiral starting from
an appropriate initial condition as “meander” or “orbital
movement” along a circle of radius l� with the linear speed

ϵF�
a and an orbit period of 2πl�=ðϵF�

aÞ ≈ 1314. Figure 4(b)
compares these predictions with results of 2D and 3D
numerical simulations at ϵ ¼ logð1.2Þ. This result is similar
to the case considered phenomenologically in Ref. [6] and
is analogous to the “orbital motion” described in Ref. [13]
for localized parametric heterogeneities.
To summarize, the movement of transmural scroll waves

through thin layers of excitable media of varying thickness
can be approximately described by thickness-averaged
two-dimensional equations, and a corresponding 2D per-
turbation theory can be successfully applied within its
limits. Our theory shows the propensity of scrolls to interact
with sharp features of the layer geometry. In the examples
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FIG. 4 (color online). Interaction of a spiral with a disk-shape
bulge in Oregonator model. (a) Components of the interaction
force calculated according to Eqs. (10), (11), (20), (21), for
Rd ¼ 225=1280 ≈ 1.756. (b) Tip trajectories in simulations of
duration corresponding to half of predicted orbiting period (lines
as indicated by the legend), together with initial transients (thin
dotted lines). Green dashed circle: the theoretically predicted
stationary orbit of the spiral center drift. Black solid circle: the
boundary of the bulge.
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FIG. 3 (color online). Results of asymptotic theory of interaction with a ridge or ditch and comparison with simulations, for the
FitzHugh-Nagumo system (2). [(a), (b)] Specific interaction force TðdÞ (19) calculated for counterclockwise spirals: (a) for
w ¼ 1.621 < w�; (b) for w ¼ 1.953 > w�. (c) Spiral wave snapshot (red color component: u field, green color component: v field,
blue color component: H field), with the previous tip path (white line), drifting along a cuneiform ditch, of width 0.24 at the lower end,
linearly growing to 2.16 at the upper end, box size 32 × 64, and Ho=Hi ¼ 1.2. (d) Coordinate of the spiral tip along the ditch as a
function of time. The horizontal dashed line shows the location of the ditch width w ¼ w� corresponding to the point of the pitchfork
bifurcation of Tðd;wÞ. The slope of the dotted line represents the slow drift speed due to the sides of the ditch being nonparallel.
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considered, this interaction caused a scroll to position itself
at a certain distance from a sharp feature and drift along or
around it with the speed determined by the feature’s
magnitude, measured by the relative variation of the
thickness. This is distinct from and not reducible to
previously known geometric effects such as filament
tension or curvature-induced drift and is completely inde-
pendent from other factors that may cause drift, such as
parametric inhomogeneities or external forcing (see e.g.,
Ref. [10]). Interaction with sharp features can manifest
nontrivial attractor structures, depending on the geometric
parameters. These predictions should be immediately
testable in experiments with the Belousov-Zhabotinsky
reaction, can be used in experiments, for instance, in
precision positioning of scrolls, and may have important
implications for understanding the evolution of reentrant
waves of excitation in the heart, particularly in atria, which
have an abundance of geometric features. For instance, our
results give a theoretical explanation and, hence, suggest a
universal character of scroll wave “anchoring” and
“meandering” caused by thickness variations, which are
implicated in the perpetuation of atrial fibrillation [6].
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