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Heat and mass transfer in nanodevices depends much on the geometry due to the strong influence of
curvature on interfacial properties, such as the Kapitza resistance. We present a method which combines
nonequilibrium square gradient theory and nonequilibrium molecular dynamics simulations to obtain the
coefficients in a curvature expansion of the interface transfer coefficients. The expansion can be used
directly to describe heat and mass transfer in complex nanogeometries. As examples of complex
nanogeometries, we consider an oblate spheroidal droplet, a prolate spheroidal bubble, and a toroidal
bubble. Depending on the sign and magnitude of the curvature, transfer is enhanced or reduced
significantly. The presented method is applicable to many types of interfaces and substances, and we
expect it to contribute to the understanding and design of future nanodevices.
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The field of nanotechnology is rapidly developing, and
demands knowledge of heat and mass transfer at the
nanoscale [1]. A crucial difference between nano- and
macroscopic systems is that interfaces constitute a signifi-
cant part of the system. Experiments have shown a
dependence of the thermal conductivity in nanoparticle
suspensions on the size of the particles, where the resis-
tance decreases for smaller particles [2,3]. Surprisingly, the
nanoporous materials exhibit the opposite behavior with
changing pore size [4]. It was hypothesized by Lervik et al.,
that these effects could be explained by the interfacial
curvature [5].
The interface is a considerable barrier to heat transfer,

which is quantified by the Kapitza resistance. This resis-
tance has been obtained from experiments and nonequili-
brium molecular dynamics (NEMD) for a variety of
interfaces and substances, e.g., vanadium-dioxide-air
solid-gas interfaces [6], water-benzene liquid-liquid inter-
faces [7], and gold-water solid-liquid interfaces [8]. Few
works have yet explored the curvature dependence of the
Kapitza resistance, or other interface transfer coefficients,
despite the striking importance in nanoscience [5,9].
Regardless of much scientific effort, the curvature depend-
ence of even the surface tension is still poorly understood.
The surface tension of a spherical droplet can be expanded
to first order as γðξÞ ¼ γ0ð1 − 2τ=ξÞ, where ξ is the droplet
radius and subscript 0 denotes the flat surface. The sign
and magnitude of the first order correction, τ, known as the
Tolman length, is still a hot topic of debate [10].
While surface tension is an equilibrium property, it is

even more difficult to uncover the curvature dependence of
interface transfer coefficients through molecular simula-
tions, since these involve huge gradients in temperature or
concentration. We present, in this Letter, a method which,
for the first time, obtains the coefficients in a curvature
expansion of interface transfer coefficients up to second

order. The method gives the possibility to accurately
describe transfer through interfaces of complex nanogeo-
metries, and can help to understand complex nucleation
processes and yet unexplained phenomena in nanoscience,
or facilitate geometric design of nanodevices with desired
properties. We use an oblate spheroidal droplet (M&M
candy), a prolate spheroidal bubble (rugby ball), and a
toroidal bubble (doughnut) to demonstrate the capabilities
of the method in complex nanogeometries.
The method combines the atomistic details of NEMD

simulations with the versatile mathematical formulation of
square gradient theory (SGT), and is applicable to any
multiphase system, like solid hydrates [11], crystals [12], or
biological systems [13], for which the simple flat interface
can be treated simultaneously with NEMD and SGT.
To obtain the coefficients in the curvature expansion, we

use SGT, which is the first approximation to mass based
density functional theory. A contribution is added to the
Helmholtz energy proportional to the square of the density
gradient [14]

F½ρðrÞ; T� ¼
Z

dr

�
feos(ρðrÞ; T)þ

1

2
ηj∇ρðrÞj2

�
: ð1Þ

Here, r is the position, feos is the equation of state value of
the Helmholtz energy density in the homogeneous phases,
ρ is the particle density, T is the temperature, and η is the
influence parameter. Equilibrium density profiles through
the interface region can be obtained by minimizing the
Helmholtz energy, keeping the total number of particles
constant. This gives a consistent set of thermodynamic
variables which depend not only on the temperature and
density, but also on spatial derivatives of the density.
Moreover, we describe feos with a very accurate reference
equation of state, and estimate η from the interaction
potential [15]. With this model, we recently reproduced
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the surface tension and Tolman length of the Lennard-Jones
(LJ) fluid from molecular dynamics simulations [15]. This
demonstrated that SGTwas able to correctly account for the
curvature dependence of interfacial properties.
SGT has also been extended to the nonequilibrium

domain by including balance equations for momentum,
mass, and energy [14]. For a flat surface, they reduce to a
set of constant fluxes determined by the boundary con-
ditions. For the particular case investigated in this Letter,
the momentum balance gives a constant pressure tensor
component perpendicular to the interface

p⊥ ¼ peos(TðzÞ; ρðzÞ)þ
η

2

�∂ρðzÞ
∂z

�
2

− ηρðzÞ ∂
2ρðzÞ
∂z2 ;

ð2Þ

where z is the coordinate perpendicular to the interface.
Equivalent equations can be formulated for curvilinear
geometries [16]. The energy balance gives a constant
measurable heat flux, J0q and the temperature through
the interface region follows from:

∇
�

1

TðrÞ
�

¼ J0qrqqðrÞ: ð3Þ

Both η ¼ 4.9 and peos are available from equilibrium
simulations [15]. This implies that once an expression
for the local resistivity rqq is known, it is possible to
numerically solve the coupled differential Eqs. (2) and (3)
for a given set of boundary conditions. The solution gives
the constants, p⊥ and J0q, but also temperature and density
profiles and all properties that depend on these. Hence, rqq
represents the missing piece in the nonequilibrium-SGT
formulation. In the bulk regions, it is connected to the
thermal conductivity λ through rqq ¼ ðλT2Þ−1.
We will utilize atomistic simulations to obtain the

functional form of rqq across the interface in terms of
temperature, density and density gradients from SGT.
The vapor-liquid interface of the Lennard-Jones fluid

will be used as a benchmark example because it reproduces
the properties of argon to a high accuracy, giving the
possibility for testing results with both simulations and
experiments. We used a truncated and shifted LJ potential
with a large cutoff distance of 6σ and present results
both for argon and in reduced units (LJ units). Results
for argon were calculated using a well depth of
ϵ=kB ¼ 119.8 K, a molecular diameter, σ ¼ 0.3405 nm
and a particle mass, m ¼ 6.69 × 10−26 kg as parameters,
where kB is Boltzmann’s constant.
To obtain information about rqq in the interface region,

we must consider a case which can be described simulta-
neously by NEMD and SGT. We used the well-established
procedure from boundary driven NEMD simulations,
where a liquid slab is located in the middle of a rectangular
simulation volume with vapor phases on each side [17].

The simulation volume had the dimensions fLx; Ly; Lzg ¼
f20σ; 20σ; 100σg. The temperature gradient was imposed
in the z direction by thermostatting the region jz=Lzj <
0.05 to a low temperature, Tcold, and the regions 0.45 <
jz=Lzj < 0.5 to a high temperature, Thot. Periodic boundary
conditions were used, and the mass flux was zero. We
found that nonequilibrium SGT reproduced the time-
averaged temperature and density profiles from NEMD
simulations along the entire coexistence line using the
following local resistivity function as input:

rqqðrÞ¼
1

λðT;ρÞTðrÞ2þ
�
αðTÞ
ρðrÞ2þ

βðTÞ
ρðrÞ4

�
j∇ρðrÞj2: ð4Þ

Here, Tr ¼ T=Tc is the reduced temperature, and Tc is the
critical temperature (Tc ¼ 1.29; 150.7 K for the LJ fluid,
argon). The second contribution to Eq. (4) gives a peak in
the interface region, which because of the ρ−2 and ρ−4

prefactors is shifted towards thevapor phase compared to the
equimolar surface. The resistivity profile is strongly asym-
metric because most of the resistance is in the so-called
“Knudsen layer” located closer to the vapor phase [18].
By comparing the temperature profiles from the non-

equilibrium-SGT model to NEMD results, we obtained for
the LJ fluid, α ¼ 0.29T−5

r and β ¼ 0.20T10
r . These param-

eters were independent of the truncation of the LJ potential
for values larger than 3σ. Figure 1 shows nonequilibrium-
SGT results in comparison with NEMD for one of the
simulations that was used in the fitting procedure. Because
of the interface resistance, a substantial temperature jump
of the order of 0.1Tr developed across the interface. Both
the size and location of the temperature jump from NEMD
were reproduced to a good accuracy by the nonequilibrium-
SGT model, as seen by comparing the solid and the dashed
lines in Fig. 1. We expect Eq. (4) to work well for vapor-
liquid interfaces, but anticipate the second contribution on
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FIG. 1 (color online). Temperature profile from NEMD (solid
line) and from nonequilibrium SGT (red dashed line).
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the right-hand side to depend on the type of interface, and
be different for, e.g., liquid-liquid, or gas-solid interfaces,
since the interface resistance here is from a different
physical mechanism than that of the Knudsen layer
(acoustic mismatch). A similar approach, however, can
be carried out for these systems to identify rqq.
While SGT and NEMD give information about how the

resistance changes locally through the interface region, a
more practical quantity is the overall resistance of the
interface. A consistent description of mass and heat transfer
across interfaces in a single-component system can be
obtained from nonequilibrium thermodynamics [19]

1

To −
1

T i ¼ RqqJ0oq þ Ro
qμJμ; ð5Þ

−
�
μo

To −
μi

T i

�
þ ho

�
1

To −
1

T i

�
¼ Ro

μqJ0oq þRo
μμJμ; ð6Þ

where the superscripts i and o indicate the values just inside
or outside the interface, respectively. Furthermore, Jμ is the
mass flux, μ is the chemical potential, h is the enthalpy, and
Rij are the overall interface transfer coefficients, known
as interface resistivities. Following Onsager, the matrix of
resistivities is symmetric, Rqμ ¼ Rμq, which gives only
three independent resistivities. The Kapitza resistance,
which frequently is reported from simulations and experi-
ments, is given by RK ¼ RqqðTsÞ2, where Ts is the surface
temperature [19].
The link between the local description from SGTand the

overall interface resistivities, Rij is the integral relations.
The validity of the integral relations has been verified by
NEMD and nonequilibrium SGT [16,17]. The interface
resistivities can be computed with the integral relations,
using only equilibrium profiles through the interface. They
are [14]

RijðξÞ ¼ hξ2h
ξ
3

Z
∞

−∞
dr

h1
h2h3

ϕijðrÞext: ð7Þ

Where again, ξ is the equimolar radius. Here, superscript
ext means: ϕðrÞext ¼ ϕðrÞ − ϕiΘðξ − rÞ − ϕoΘðr − ξÞ,
where Θ, is the Heaviside function. Moreover, h1, h2,
and h3 are Lamé coefficients and superscript ξ means
evaluated at the equimolar dividing surface. The Lamé
coefficients are trivially 1 for a flat surface, and functions of
the coordinate perpendicular to the interface for curved
geometries. Equation (7) can also be used to calculate
the interface resistivities for curved geometries, with
the arguments, ϕqq ¼ rqq, ϕqμ ¼ rqqðho − hÞ, and ϕμμ ¼
rqqðho − hÞ2. Hence, all interface transfer coefficients
Rqq; Rμμ, and Rqμ ¼ Rμq depend on the local resistivity
rqq expressed in Eq. (4). The interface resistivities of the
flat interface, Rij;0 are functions of the temperature only.
In complex geometries, however, they also depend on the

interface curvatures. This dependence can be expressed
through the two principal curvatures, κ1 and κ2. An
equivalent description which is used more commonly is
obtained by using the total curvature, H ¼ κ1 þ κ2 and
the Gaussian curvature, K ¼ κ1κ2. We propose the follow-
ing second order curvature expansion for the interface
resistivities:

RijðH;KÞ ¼ Rij;0½1þ dijHþ νijðdijHÞ2 þ ν̄ijd2ijK�; ð8Þ

where i; j ¼ fq; μg. The length, dij, gives the typical size
of a droplet where curvature corrections become important,
while ν and ν̄ are scalars. The curvature expansion in
Eq. (8) becomes for a spherical (subscript s) and a
cylindrical geometry (subscript c)

Rij;sðξÞ ¼ Rij;0

�
1þ 2dij

ξ
þ d2ijð4νij þ ν̄ijÞ

ξ2

�
; ð9Þ

Rij;cðξÞ ¼ Rij;0

�
1þ dij

ξ
þ d2ijνij

ξ2

�
: ð10Þ

The square gradient model can now be solved for a
spherical and a cylindrical geometry from negative curva-
tures (bubbles) to positive curvatures (droplets) and used
together with the integral relations in Eq. (7) to obtain
Rij;sðξÞ and Rij;cðξÞ. This is illustrated by the solid line in
Fig. 2. By performing a quadratic regression of the interface
resistivities from negative curvatures to positive curvatures
having relatively large radii to avoid higher order contri-
butions, we obtain a second order polynomial in ξ−1 (red
dashed line). The regression coefficients in the polynomial
correspond to the prefactors in Eqs. (9) and (10). It turns out
that it is sufficient to solve the square gradient model for a
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FIG. 2 (color online). The Kapitza resistance at Tr ¼ 0.58 as a
function of the total curvature in a spherical geometry, from the
integral relations [Eq. (7), solid line], and the curvature expansion
[Eq. (8), red dashed line].
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flat interface, a cylindrical geometry, and a spherical
geometry to obtain all the relevant coefficients in the
curvature expansion, Rij;0, dij, νij, and ν̄ij. We found
the curvature expansion defined in Eq. (8) to predict the
interface transfer coefficients to a good accuracy for
geometries having dimensions of only a few nanometers,
in a range where the Kapitza resistance can double in size
(see Fig. 2).
Table I reports the coefficients in the curvature expansion

of the interface resistivities of the vapor-liquid interface of
the LJ fluid and argon at Tr ¼ 0.58. A comprehensive
analysis of their temperature and cutoff dependence will be
presented in a future work.
The linear terms dij have the same dimension as the first

order curvature correction of the surface tension, the
Tolman length. The Tolman length of the LJ fluid was
calculated from recent MD simulations to be −0.1σ [20],
which is 45 times smaller in magnitude than, for instance,
dqq. It is clear that the interface resistivities depend much
more strongly on curvature than the surface tension.
The coefficients in Table I give unique new insight into

condensation or evaporation processes. MD simulations of
nucleation, show that both the critical nucleus and cavity
deviate from a spherical geometry [21,22]. The critical
cluster of, for instance, water has an oblate spheroidal
geometry [23], and recent work has shown that heat transfer
may limit the growth [21]. This makes a curvature
expansion of the interface resistivities useful to describe
these processes accurately. There is, in principal, no
restrictions to which geometries and shapes can be
addressed with the curvature expansion in Eq. (8).
We shall use an oblate spheroidal droplet [M&M,

Fig. 3a], a prolate spheroidal bubble [rugby ball,
Fig. 3b], and a toroidal bubble [doughnut, Fig. 3c] as
examples of complex nanogeometries. It is evident that
curvature affects droplets and bubbles very differently.
While the Kapitza resistance of the spheroidal droplet is
smaller than that of a flat interface [Fig. 3a], the Kapitza
resistance of the bubble is at some locations more than
2 times larger [Fig. 3b]. Another striking consequence of
the large curvature dependence of the interface resistivities
is that, even for relatively large droplets or bubbles as
depicted in Fig. 3, the growth process must be fundamen-
tally heterogeneous. It is surprising that, for droplets,
transfer will be enhanced considerably at locations with
high curvature [along equator in Fig. 3a]. For bubbles on

the other hand, the resistance is largest at locations with
high curvature [the end points in Fig. 3b]. Table I shows
that the coefficients of heat transfer, mass transfer, and the
coupling coefficient, all follow this behavior. Hence,
fluctuations in shape enable the droplet or bubble to

TABLE I. The curvature expansion coefficients of the interface
resistivities of the LJ fluid (argon) at Tr ¼ 0.58.

Rij;0 (LJ) Rij;0 (argon) dij=σ νij ν̄ij

Rqq 88.7 1.1 × 10−10 m2 s=JK −4.5 0.7 −0.2
Rqμ 141.0 1.8 × 10−7 m2 s=molK −2.7 0.9 −0.2
Rμμ 359.6 4.5 × 10−4 Jm2 s=mol2 K −2.1 0.9 −0.2
RK 49.9 8.6 × 10−7 m2 sK=J −4.5 0.7 −0.2

FIG. 3 (color online). The Kapitza resistance divided by the
Kapitza resistance of the flat interface of argon at Tr ¼ 0.58 of an
(a) oblate spheroidal droplet, (b) prolate spheroidal bubble,
(c) toroidal bubble. The spheroidal radii are 25 and 15, and
the toroidal radii are 8 and 22 in reduced units.
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enhance growth in some directions. This could have
considerable implications on how the initial growth phase
of nucleation should be understood. Videos showing how
the Kapitza resistance changes with the shape, of a
spheroidal bubble and a spheroidal droplet can be found
in the Supplementary Material [24].
In nature, toroidal bubbles are induced by buoyancy or

through cavitation near solid interfaces. Figure 3c shows
that the Kapitza resistance of toroidal nanobubbles is very
different at the outer and the inner surfaces.
In summary, we have presented a method for obtaining

the curvature dependence of interface transfer coefficients,
such as the Kapitza resistance, taking advantage of NEMD
and SGT. The method has a wide range of applications and
can be used to describe heat and mass transfer in complex
nanogeometries. We believe that our method will be an
excellent tool to deal with complex nucleation processes
and for future studies aiming to unravel the previously
mentioned puzzling behavior of nanoparticle suspensions
and nanoporous materials. In addition, by mapping the
curvature dependence of nanoparticles, pores, or other
nanostructures, it may become possible to tailor the
geometry to give the desired properties.
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