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Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in
space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time,
another fundamental aspect of turbulence which has great importance for observations of solar flares and
other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy
dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal
structures, “flare events,” responsible for a large fraction of the energy dissipation. We find that although
the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations.
We find that the probability distribution of dissipated energy has a power-law index close to α ≈ 1.75,
similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the
system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.
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Introduction.—Intermittency plays a major role in tur-
bulence by causing processes such as energy dissipation
and particle acceleration to be highly localized in coherent
structures. It also forestalls efforts toward a complete theory
of turbulence. Many tools have been employed to study
intermittency, including structure functions [1,2], scale-
dependent kurtosis [3], topological methods [4,5], and
statistics of discontinuities [6,7]. However, past studies
have mainly focused on spatial intermittency, giving
limited information about the dynamics. In order to under-
stand the temporal aspects of intermittency, including
characteristic time scales of structures as well as their
interactions and stability, a broader framework is needed.
A promising new paradigm is the statistical analysis of

coherent structures, which is robust and informative for
studies of intermittency. The occurrence rates, intensities,
and morphology of structures yield insight to the inhomo-
geneity, anisotropy, and characteristic scales of the dynam-
ics. Coherent structures can be simply identified as regions
in space bounded by an isosurface of some field. This was
used to study vorticity filaments in hydrodynamic turbu-
lence [8–10], magnetic structures in the kinematic dynamo
[11], and dissipative structures in magnetohydrodynamic
(MHD) turbulence [12–15] and ambipolar diffusion MHD
[16]. Since coherent structures and intense dissipative
events are experimentally observable, there are many
practical applications, including solar flares, instabilities
in fusion devices [17], and radiative signatures in optically
thin astrophysical plasmas, e.g., in black-hole accretion
disk coronae [18], hot accretion flows [19], and jets [20], in
pulsar wind nebulae [e.g., [21,22]], and possibly in the hot
gas in galaxy clusters.
This Letter addresses some fundamental aspects of

intermittency in MHD turbulence. A major question is

whether, in the limit of large Reynolds number, energy
dissipation is dominated by a few intense, large-scale
events or by many weak, small-scale events. A related
question is whether there is an inherent relationship
between spatial intermittency and temporal intermittency,
e.g., whether larger structures retain their coherency in
time. These temporal aspects of intermittency have been
practically unexplored in previous MHD studies.
In this Letter, we extend a framework previously

developed for the statistical analysis of dissipative struc-
tures [14] into the temporal realm, thereby considering 4D
spatiotemporal objects representing flare events. We apply
this novel methodology to study intermittency in numerical
simulations of strong incompressible MHD turbulence. We
describe the distributions, scalings, and evolution of flare
events by characterizing their length scales, durations,
dissipated energies, and peak energy dissipation rates.
These are the first results on the fundamental properties
of the combined spatial and temporal intermittency of
energy dissipation in 3D MHD turbulence.
The primary questions addressed here for MHD turbu-

lence are also fundamental for the solar corona. In fact, our
approach has strong similarities with observational studies
of solar flares [23–32] and stellar flares [33–36], which use
the time series of x-ray and extreme UV emissions to
measure the duration, peak intensity, and fluence of flares,
from which dissipated energy is inferred. For the solar
corona, a measurement of central importance is the prob-
ability distribution for dissipated energy, due to its role in
assessing the nanoflare model for coronal heating [37,38].
This distribution exhibits a power law over 8 orders of
magnitude, with an index near −1.8, somewhat shallower
than the critical index of −2 required for nanoflares to
dominate the overall heating [39].
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We compare our results with the observed statistical
properties of solar flares. We stress that there are several
basic differences between incompressible MHD turbulence
and the solar corona. In contrast to volumetrically driven
turbulence, the solar corona is modeled by force-free MHD
with slowly driven, line-tied boundaries. Furthermore,
kinetic effects may become important during reconnection.
Despite these differences between our simulations and the
solar corona, we find that the statistical properties of flare
events have multiple similarities in both cases. This
suggests that MHD turbulence may play a role in the
energetics of the corona [30,40], a possibility that should be
investigated more carefully in future studies.
Method.—We perform simulations of reduced MHD,

applicable since the uniform background magnetic field
B0 ¼ B0ẑ is strong relative to turbulent fluctuations,
B0 ≈ 5brms. The equations are [41]

� ∂
∂t∓VA ·∇∥ þ z∓ ·∇⊥

�
z� ¼ −∇⊥Pþ ν∇2⊥z� þ f�⊥

∇⊥ · z� ¼ 0; ð1Þ

where z� ¼ v� b are the Elsässer variables (perpendicular
to B0), v is the velocity field, b is the fluctuating magnetic
field (in units of the Alfvén velocity, VA ¼ B0=

ffiffiffiffiffiffiffiffiffiffi
4πρ0

p
,

where ρ0 is the uniform plasma density), P is the total
pressure, and f�⊥ is the external forcing. We use uniform
fluid viscosity ν and magnetic diffusivity η with ν ¼ η.
We consider structures in the current density j ¼ jz ¼
ẑ ·∇⊥ × b; the resistive energy dissipation rate per unit
volume is ηj2.
Equations (1) are solved using a fully dealiased 3D

pseudospectral algorithm (for details, see Ref. [42]). The
periodic box is elongated in ẑ by a factor of L∥=L⊥ ¼ 6,
where L⊥ ¼ 2π is the box size in simulation units. Time
scales are in units of eddy turnover times, τeddy ¼
L⊥=ð2πvrmsÞ ≈ 1. The turbulence is driven at large scales
by colliding Alfvén waves, generated from statistically
independent random forces f�⊥ at wave numbers
2π=L⊥ ≤ kx;y ≤ 2ð2π=L⊥Þ, kz ¼ 2π=L∥. The forcing is
solenoidal, has random Fourier coefficients taking
Gaussian values that are refreshed independently approx-
imately 10 times per eddy turnover time, and has amplitude
such that brms ∼ vrms ∼ 1. The Reynolds number is given
by Re ¼ vrmsðL⊥=2πÞ=ν.
We analyze snapshots dumped at a cadence ðΔtÞ−1 from

four simulations shown in Table I. The main results are
from runs with 5123 resolution, with the Re ¼ 1250 case
having the highest cadence and longest time interval.
Because of computational constraints, Δt is larger than
the internal time step in the simulation. The minimum
cadence required to properly track structures is estimated
by requiring that the distance advected by the flow during
Δt is less than the typical current sheet thickness, giving
vrmsΔt < brms=jthr. The cadences are comparable to this
value and the results show convergence with cadence.

We refer to spatial dissipative structures in a given time
snapshot as states; they are identified as spatially connected
sets of points with current densities jjðxÞj exceeding a fixed
threshold, jthr [43]. Typical states are thin, ribbonlike
current sheets aligned with the z direction. They occupy
a small fraction of volume but account for a large fraction
of the overall resistive energy dissipation. Their lengths and
widths span the inertial range, while thicknesses are
localized inside the dissipation range [13,14].
Our presentwork extends this procedure into the temporal

realm by applying a similar threshold criterion to the 4D
space-time field jðx; tÞ. We refer to the resulting 4D
spatiotemporal structures as processes or flare events. Our
numerical algorithm first identifies the states in each snap-
shot as described above. It then connects the states in time by
finding, for each given state, any other states in the two
adjacent (past and future) snapshots having points con-
nected to the same spatial region. In general, the states in one
snapshot are not in bijective (i.e., one-to-one) correspon-
dence with the states in the adjacent snapshot. This is due to
interactions between structures, including mergers and
divisions, and also the spontaneous formation of new states
and destruction of old states.We refer to a sequence of states
representing bijective evolution of a structure, beginning
and ending with interactions, formation or destruction, as a
path. Processes are then obtained as sets of paths connected
via interactions. The natural and conservative approach for a
temporal analysis is to study processes rather than individual
paths, which become ambiguous upon interacting.
We characterize processes by the following quantities.

The process duration τ is the time between the final state of
the process and its initial state (normalized to τeddy). The
length L for a state is the maximum distance between any
two constituent points (normalized to the perpendicular box
size L⊥). This is generalized for a process as the maximum
length Lmax among constituent states. The instantaneous
Ohmic energy dissipation rate for a state is E ¼ R

dVηj2,
with integration over the constituent points of the state
(normalized to the average total energy dissipation rate,
Etot ≈ 1). This is generalized to the total dissipated energy
of a process, E ¼ R

dt
R
dVηj2, by combining the energy

dissipation rates of all constituent states (normalized to
Etot ≈ Etotτeddy ≈ 1). We also consider the peak energy
dissipation rate Emax, which is the maximum energy
dissipation rate among constituent states.
Results.—For the following analysis, we choose

jthr=jrms ≈ 6.8. This threshold is high enough to avoid
percolation of processes through space and time. Processes

TABLE I. Simulations.

Simulation Resolution Re Δt−1 Time interval

1 2563 800 64 10.0
2 5123 800 32 12.2
3 5123 1250 64 15.6
4 5123 1800 32 12.2
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that exist during the initial or final snapshots do not
significantly contribute to the statistical results; we retain
them in distributions for better statistics.
An example process, with duration τ ≈ 0.5 and 31 distinct

paths, is shown in Fig. 1. Representative states are shown
(in green) on a subdomain of the simulation grid. We also
show a schematic of the paths and interactions in the
process. The process includes a division after the structure
is stretched. A large number of paths are produced during
the final stages, as the process decays toward the threshold.
We now consider the statistical properties of the proc-

esses from the four simulations in Table I. The mean
number of states per snapshot is hNstatei ¼ f194; 288; 657;
1328g. For fixed cadence of Δt−1 ¼ 32, the mean number
of processes per eddy turnover time is Nproc ¼ f914; 1271;
4272; 11608g, strongly increasing with Re. The most
complex processes have ∼103 constituent paths. We find
a consistent asymmetry in the interactions: There are more
divisions than mergers, with a ratio Nmer=Ndiv ¼
f0.84; 0.78; 0.80; 0.82g.
We show in Fig. 2 the probability distributions for

dissipated energy E and for peak energy dissipation rate

Emax. The distribution for dissipated energy, PðEÞ, has a
power-law tail with an index near −1.75� 0.1, which is
close to the analogous observations for total energy released
in solar flares [29,44]. The power law extends across 3 orders
of magnitude inE, fromE ≈ 10−5 up to about E ≈ 10−2. For
smaller E, the distribution is shallower and apparently
nonuniversal, likely due to dissipation-range effects and
threshold effects. With increasing Re, the power law extends
to smaller E, consistent with the longer inertial range. The
distribution for peak energy dissipation ratePðEmaxÞ exhibits
a power law with index close to −2.0� 0.1 from Emax ≈
10−4 to Emax ≈ 10−2. Similar indices are observed in dis-
tributions for peak hard x-ray flux in solar flares (e.g.,
Ref. [44]) and for energy dissipation rates E of states [14].
The distribution for process durations τ is also shown in

Fig. 2. The durations extend to well above an eddy turnover
time, sometimes comparable to the analyzed time interval.
The distribution from τ ≈ 0.2 to τ ≈ 8 can be fit to a power
law with index near −3.2� 0.2, somewhat steeper than the
indices ranging between −2.2 and −3.0 for solar flare
durations [23,32,44], although close to the index −3.4 for
rise times [28].

FIG. 1 (color online). States in a typical process with duration τ ≈ 0.5, shown in green on a piece of the simulation lattice (with
dimensions 0.10L⊥ × 0.14L⊥ × 0.90L⊥, without accounting for elongation of the lattice vertically). Also shown is a schematic of paths
and interactions in the process, with red lines marking the times corresponding to the shown states.

FIG. 2 (color online). The probability distributions for dissipated energy E, peak energy dissipation rate Emax, and duration τ for
Re ¼ 800 (red line), Re ¼ 1250 (blue line), and Re ¼ 1800 (green line).
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The process characteristics are related by strong
correlations, with examples shown in the scatterplots in
Fig. 3. We find that Lmax ∼ τ, previously inferred in
solar flare observations [45], while Emax ∼ τ2 and E ∼ τ3.
These scalings are consistent with the estimate
E ¼ R

dt
R
dVηj2 ∼ τEmax ∼ τVmaxηj2thr ∼ τ3, assuming

that volume scales as length squared [13,14] and current
densities are near jthr. From these correlations, E ∼ E3=2

max,
and hence PðEÞ is shallower than PðEmaxÞ.
Finally, we consider the evolution of processes over their

durations, based on the constituent states at the given times.
We focus on the energy dissipation rate EðtÞ for 0 < t < τ.
Although this time series is irregular for any given process,
we find that processes of all durations exhibit similar
average evolutions. In Fig. 4, we show the energy dis-
sipation rate normalized to the peak, EðtÞ=Emax, versus
normalized time, t=τ, averaged for all processes. We find
that hEðt=τÞ=Emaxi ≈ sin ðπt=τÞ. Minor deviations suggest a
temporal asymmetry, quantifiable by the first moment,
ht=τiE ¼ R

τ
0 ðt=τÞEðtÞdt=

R
τ
0 EðtÞdt, which is 0.5 for sym-

metric functions. We measure a very small but consistent
asymmetry: For Re ¼ f800; 1250; 1800g, ht=τiE ¼f0.483;
0.483;0.476g. Hence, a flare event grows slightly faster
than it decays; this is similar to observed solar and stellar
flares, although the asymmetry is amplified by the Neupert
effect [28,29,32,36,46].

Conclusions.—In this Letter, we investigate the com-
bined temporal and spatial intermittency of energy dis-
sipation in numerical simulations of MHD turbulence. The
conclusions are robust with respect to cadence, resolution,
and threshold. We find that a significant fraction of energy
dissipation occurs in current sheets that are temporally
organized in intense, long-lived flare events with durations
that may span several large eddy turnover times. The
process duration scales proportionally to its maximum
length. The energy dissipated in these intense processes
is distributed as a power law with index near −1.75,
implying the dominance of large, intense flare events.
This can be compared to the spatial structures at fixed
times, which have a distribution of energy dissipation rates
closer to the critical index of −2, suggesting that structures
of all intensities instantaneously contribute equally to the
overall energy dissipation rate [14].
We find that the distributions and scalings are insensitive

to Re, suggesting universality. This is consistent with the
fact that the structures are coherent across inertial-range
scales, with only their thickness being set by the dissipation
mechanism. The dependence of the statistics on Re has
likely saturated at the relatively low Re considered here,
making the results relevant for large Re in space and
astrophysical turbulence.
We find asymmetry in the divisions and mergers of

current sheets, as well as in the evolution of the energy
dissipation rate of a process. This temporal asymmetry can
possibly be linked to the direct cascade of energy from
large to small scales, giving large structures a tendency to
divide into smaller structures. In future studies, temporal
asymmetry may be a useful diagnostic for current sheet
instabilities, including the tearing instability [47–50].
The present work lays out the foundation for a compre-

hensive statistical analysis of dissipative processes in MHD
turbulence, to appear in a future paper [51]. The method-
ology can be applied to many other systems, including
hydrodynamic turbulence [52], line-tied MHD [15,53],
kinetic plasma turbulence [54,55], avalanching systems
[56], and other complex dynamical systems.

The authors would like to thank Jean Carlos Perez for his
support in conducting the numerical simulations. This work
was supported by NASA Grant No. NNX11AE12G, U.S.

FIG. 3 (color online). Scatterplots of maximum length Lmax, peak energy dissipation rate Emax, and dissipated energy E versus the
process duration τ for Re ¼ 1250.

FIG. 4 (color online). The evolution of energy dissipation rate
relative to the peak, Eðt=τÞ=Emax, averaged across all processes of
all durations, for Re ¼ 800 (red line), Re ¼ 1250 (blue line), and
Re ¼ 1800 (green line). This is well fit by a sine function (black
line), with small asymmetric deviations.
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