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In a rotating toroidal plasma surrounded by a resistive wall, it is shown that linear MHD instabilities can
be excited by couplings between the resistive wall mode (RWM) and stable ideal MHD modes. In
particular, it is shown that the RWM can couple not only with stable external kink modes but also with
Alfvén eigenmodes that are ordinarily in the stable continuum of a toroidal plasma. The RWM growth rate
is shown to peak whenever the Doppler shift caused by the plasma rotation cancels the frequency of an ideal
MHDmode, so that the mode appears to have zero frequency in the laboratory frame. At these values of the
rotation frequency, the RWM can overcome the stabilizing effects of plasma rotation, continuum damping,
and ion Landau damping.
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In order to realize tokamak-type fusion reactors, it is
necessary to stabilize magnetohydrodynamic (MHD) insta-
bilities that cause disruptive events and terminate the
plasma discharge. In particular, it is crucial to stabilize
the ideal kink-ballooning mode by surrounding the plasma
with a conducting wall. Even when the ideal mode is
stabilized, however, the finite electric conductivity of any
realistic wall gives rise to another instability known as the
resistive wall mode (RWM). Although RWMs grow at a
much slower rate than ideal kink-ballooning modes, they
do trigger disruptive events, eventually. It is important to
understand the physics of RWM stabilization in order to
produce a steady-state high-β plasma, where β is the ratio
of plasma thermal pressure to magnetic pressure.
Numerical studies have shown that RWMs in tokamaks

can be stabilized by toroidal plasma rotation in combination
with energy dissipation mechanisms [1]. Such rotational
stabilization has been confirmed in many experiments
[2–4]. These observations have motivated much research
activity with the goal of identifying the key energy
dissipation mechanisms that need to be taken into account
in order to make precise predictions for the minimum
rotation frequency required to stabilize RWMs. For exam-
ple, recent theoretical and numerical studies have shown
that kinetic effects play an important role [5,6].
On the other hand, experiments have also shown that

MHD instabilities are occasionally capable of terminating
a discharge disruptively, even when the plasma rotation
frequency should have been sufficient to stabilize theRWMs
[7,8]. These experimental results imply that another MHD
mode becomes unstable in a rotating tokamak plasma. Such
a destabilization has also been reported in numerical studies
[9,10], but the underlying physics remained unclear.

The connection between ordinarily stable external kink
modes and the RWM has already been made in a rotating
cylindrical plasma [11,12]. When a resistive wall is located
near the plasma surface, not only the RWM but also stable
external kink modes (with frequencies �ωkink in a static
plasma) exist. Since these stable kink modes are ideal
modes, their frequencies are Doppler shifted by plasma
rotation. When the rotation frequency is increased, mode
frequencies successively cross through zero in the labo-
ratory frame. Whenever this occurs, the RWM is strongly
destabilized by coupling with the Doppler-shifted kink
mode. After the Doppler-shifted mode frequency passes
through zero, the RWM is stabilized since the sign of
its energy switches to positive [12]. When this occurs,
however, the kink mode attains negative energy and thus
becomes weakly unstable due to finite wall resistivity. The
destabilization of negative-energy modes by wall resistivity
is a generic effect that applies to any ordinarily stable ideal
MHD modes [13]. It should be noted, however, that the
negative-energy kink mode can be stabilized when its mode
structure and frequency overlaps with sound and shear
Alfvén continua [14,15]. Other damping effects, such as
ion Landau damping, also have a stabilizing influence.
In the present work, using numerical methods, the exci-

tation of MHD instabilities through couplings between
RWMs and stable MHD modes is demonstrated for the first
time for a rotating toroidal plasma. These instabilities exist
even after theplasma rotation frequencyenters a regime that is
stablewith respect toRWMs.Theplasmastability is analyzed
with the linear MHD stability code MINERVA/RWMaC
[16,17]. MINERVA [18] solves the Frieman-Rotenberg
equation [19], including a parallel sound wave damping
force FSD that represents ion Landau damping [1,20]:
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ρ
∂2ξ

∂t2 þ 2ρðu ·∇Þ ∂ξ∂t ¼ FðξÞ þ FSDðv∥Þ þ
∂Dw

∂t ; ð1Þ

FSD ¼ −κ∥
ffiffiffi

π
p jk∥vth;ijρv∥b; ð2Þ

v∥ ¼
∂ξ∥
∂t þ ðu · ∇Þξj∥: ð3Þ

Here, ρ is the plasma mass density, ξ is the plasma
displacement, u is the plasma rotation velocity, and F is
the force operator including rotation effects. The last term in
Eq. (1) with Dw is the contribution from the resistive wall,
which is calculated with RWMaC. The parameters in Eq. (2)
are the parallel wave number k∥ ¼ ðn −m=qÞ=R, the ion
thermal velocity vth;i, the strength parameter κ∥, and the unit
vector in the direction parallel to magnetic field b, where n
and m are the toroidal and poloidal mode numbers, q is the
safety factor, and R is the major radius. Note that FSD was
originally derived for a cylindrical plasma [21], and is
implemented here for a torus plasma with κ∥.
The parameters of the numerically constructed equilib-

rium are as follows. The cross section of the last closed
magnetic surface is circular with minor radius a. The aspect
ratio is A ¼ R=a ¼ 3.0, with R evaluated at the axis
R0 ¼ 1.0 ½m�. The poloidal beta value is βp ¼ 0.3, the
toroidal magnetic field on axis is Bt0 ¼ 1.0 ½T�, and the
plasma current is Ip ¼ 0.6 ½MA�. An ideal external kink
mode becomes marginally stable when an ideal conducting
wall is located at radius d=a ¼ 1.25, where d is the wall
minor radius. Hence, a resistive wall with wall diffusion
time τwall ¼ 1.6 × 10−2 is located at d=a ¼ 1.2. Figure 1
shows the profile of q, and the spectra of shear Alfvén
continua; the ion (deuterium) number density is taken to be
constant with ni ¼ 1 × 1020½1=m3�. For a static equilib-
rium, there are three eigenmodes in the gap between the
m ¼ 2 and m ¼ 3 shear Alfvén continua: one is the

external kink mode with ω=ωA0 ¼ 0.155, and the other
two are the reversed shear Alfvén eigenmode (RSAE) [22]
and the global Alfvén eigenmode (GAE) [23] with
ω=ωA0 ¼ 0.085 and 0.310, where ωA0 is the toroidal
Alfvén frequency on axis.
The plasma is rotated rigidly in the toroidal direction

and the RWM stability is analyzed for a range of rotation
frequencies Ωϕ0. In the following, the frequencies ω and
Ωϕ0 are normalized by ωA0. Note that the effect of the
centrifugal force on the equilibrium is neglected for
simplicity. As a first step, the RWM stability is analyzed
in the absence of sound waves by letting Γ ¼ 0.0, where Γ
is the ratio of specific heats. The result shown in Fig. 2
indicates that the growth rate γ of the RWM decreases
when Ωϕ0 is increased up to 0.07. This is due to the
well-known stabilizing effect of toroidal rotation. However,
for Ωϕ0 > 0.07, one can see that γ exhibits three local
maxima near Ωϕ0 ≃ 0.085, 0.155, and 0.310, which cor-
respond to the frequencies of the RSAE, the external kink
mode and the GAE, respectively. As shown in Fig. 3, the
radial structure of the unstable mode at each of these local
maxima is nearly identical to that of the corresponding
stable eigenmode whose frequency is Doppler shifted to
zero. In addition, the dependence of the mode frequency on
Ωϕ0 in Fig. 2 shows that the unstable modes are Doppler
shifted when Ωϕ0 becomes larger than the respective
frequency at which γ has a local maximum. These results
prove that the MHD instabilities are caused by couplings
between RWMs and stable MHD modes.
The new and remarkable finding from our analysis of a

toroidal plasma is that RWMs can not only couple to
external kink modes but also Alfvén eigenmodes. In
contrast, in a cylindrical plasma, RWMs couple only with
external kink modes [11,12]. These results imply that a
RWM may couple to many other modes as well: for
example, RSAE/GAE as in Fig. 2, toroidicity-induced
Alfvén eigenmodes [24], beta-induced Alfvén eigenmodes

FIG. 1 (color online). Profile of q and spectra of shear Alfvén
continua; ψ is the poloidal flux normalized to be 0 (1) at the axis
(surface), hAi is the value of A averaged on flux surface, and the
frequency is normalized with ωA0. There are three eigenmodes in
the gap between them ¼ 2 andm ¼ 3 shear Alfvén continua: the
RSAE, the external kink mode, and the GAE with ω ¼ 0.085,
0.155, and 0.310, respectively.

FIG. 2 (color online). Dependencies of γ and ω on Ωϕ0. There
are three local maxima of γ near Ωϕ0 ≃ 0.085, 0.155, and 0.310,
which correspond to the frequencies of the RSAE, the external
kink mode, and the GAE. In addition, the unstable mode is
Doppler shifted after Ωϕ0 passes the above frequencies.
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[25], and so on. Moreover, note that these couplings lead to
the successive excitation of different MHD instabilities as
the rotation frequency increases, even after the RWM is
fully stabilized.
In a conventional aspect ratio A≃ 3 tokamak with

R0 ≥ 1.0, the maximum toroidal rotation frequency is
usually less than 0.05ωA0. In this range, however, sound
wave damping has a strongly stabilizing effect on RWMs
[20,26]. In order to determine whether or not the RWM
excitation is effective at such a low value of the rotation
frequency, RWM stability is analyzed numerically in a case
where the minimum q value is decreased to 2.07. The q
profile and the spectra of the shear Alfvén and sound
continua are shown in Fig. 4. The lower value of the
minimum of q reduces the frequency of the RSAE, which is
expected to exist near the local minimum of the m ¼ 2
shear Alfvén continuum. In addition, plasma compress-
ibility is included (Γ ¼ 5=3) in order to take into account
eigenmodes related to sound wave continua.
The shape and the equilibrium parameters of the new

equilibrium are the same as those of the equilibrium
analyzed above, except for the q profile and the value of

βp ¼ 0.7. The q profile was changed by adjusting only the
plasma current profile. The impact of the sound wave
damping force on plasma stability is investigated by
varying κ∥ between 0.0 (ideal MHD) and 0.5. Relatively
low values of κ∥ are used because the strength of the
damping force in the toroidal case is weak compared with
the cylindrical case when the plasma rotation frequency is
lower than the sound wave frequency [26,27]. We note that
the ideal mode is marginally stable when an ideally
conducting wall is located at d=a¼ 1.38, so that d=a¼ 1.3
is chosen as a suitable resistive wall position for the
RWM stability analysis.
Figure 5 shows the dependencies of γ and ω on the rigid

rotation frequency Ωϕ0. First, let us focus on the result of
the ideal MHD case (κ∥ ¼ 0.0). In this case, the depend-
ence of γ on Ωϕ0 shows four local maxima in the range
Ωϕ0 ≤ 0.05. The rotation frequencies at these maxima seem
to correspond to the two local maxima of the m ¼ 2 sound
continuum, the crossing point between the m ¼ 2 sound

FIG. 3 (color online). Eigenfunctions of the modes which are destabilized when Ωϕ0 ¼ (a) 0.0, (b) 0.085, (c) 0.155, and
(d) 0.310 (green lines). The red dotted lines in (b), (c), and (d), respectively, show the eigenfunctions of the RSAE, the external kink
mode and the GAE, which are stable when the plasma is static (ωjΩϕ0¼0 ¼ Ωϕ0). Clearly, each of these ideal MHD modes is identical to
the respective unstable mode in (b), (c), and (d).

FIG. 4 (color online). Profile of q and spectra of shear Alfvén
and sound continua in a plasma with weakly reversed shear. The
minimum of q is 2.07.

FIG. 5 (color online). Dependencies of (a) γ and (b) ω on Ωϕ0

for several values of κ∥. In the ideal MHD case (κ∥ ¼ 0.0), there
are four local maxima of γ near Ωϕ0 ≃ 0.01, 0.013, 0.019, and
0.046, and the unstable modes are Doppler shifted. By increasing
κ∥, the RWM is stabilized when Ωϕ0 > 0.019, but an MHD mode
is again destabilized when Ωϕ0 > 0.03 as in the ideal MHD case.
All the MHD modes that are destabilized for κ∥ ≠ 0.0 are
regarded as RWMs because these modes are hardly Doppler
shifted.
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continuum and the m ¼ 3 shear Alfvén continuum, and the
local minimum of the m ¼ 2 shear Alfvén continuum,
respectively. It is well known that discrete modes can exist
near local minima or maxima and intersections of the
continua, and such ordinarily stable MHD modes may be
responsible for the observed excitations. In particular, the
unstable modes in the ranges 0.019 < Ωϕ0 < 0.03 and
Ωϕ0 ≥ 0.046 are negative-energy ideal modes because the
mode frequencies are Doppler shifted. This indicates that
the RWM indeed couples with these ideal modes, and can
make them unstable.
Next, we consider the effect of the sound wave damping

force (κ∥ ≠ 0) on the instability excited by the coupling. As
shown in Fig. 5, the growth rate γ of the RWM decreases
monotonically as κ∥ increases, and the RWM is fully
stabilized in the range 0.019 ≤ Ωϕ0 ≤ 0.03. However, the
unstable mode still remains for Ωϕ0 > 0.03, even when κ∥
is increased to 0.5. This result demonstrates that the MHD
instabilities due to couplings between RWMs and stable
MHD modes can be excited in the low-rotation-frequency
range, where they are subject to not only continuum
damping but also ion Landau damping.
It is also interesting to note that, in Fig. 5(a), the plasma

is stable in the ranges 0.019≤Ωϕ0 ≤ 0.03 and Ωϕ0 ≥ 0.046
when κ∥ ≠ 0.0, whereas the negative-energy ideal modes
are unstable in the same ranges when κ∥ ¼ 0.0. In addition,
the dependence of ω on Ωϕ0 in Fig. 5(b) shows that the
unstable modes are not Doppler shifted when κ∥ ≠ 0.0.
These results indicate that the sound wave damping force
effectively stabilizes the negative-energy ideal modes that
have nonzero frequencies.
In summary, we have demonstrated the existence of a new

type of MHD instabilities in toroidally rotating tokamak
plasmas. The instabilities are a flow-stabilized RWM and a
negative energy idealMHDmodewhich are excited through
the coupling between a RWM and a stable ideal MHD
mode. This coupling becomes effective when the frequency
of the stable ideal mode in the laboratory frame becomes
zero due to the Doppler shift caused by the rotation. Unlike
in a cylindrical plasma, the RWM in a torus can couple with
not only the external kink mode but also various shear
Alfvénic and slow magnetosonic eigenmodes. As a conse-
quence, the RWM is excited at various values of the plasma
rotation frequency, overcoming stabilizing effects associ-
ated with continuum damping and ion Landau damping.
However, our numerical results also show that ion Landau
damping is capable of suppressing negative-energy ideal
modes with nonzero frequencies, thus, opening windows
of stability with respect to RWMs. We remark that excita-
tions of RWMs through couplings with stable Alfvén
eigenmodes also occur below the no-wall β limit, where
RWMs are stable even for a static plasma. In this case, the
couplings to Alfvén eigenmodes occur in the same way as
coupling with an external kinks mode that were discussed in
Refs. [11,12].

In order to check whether the RWM excitation mecha-
nism described above plays a role in experiments, it is
necessary to take into account other damping mechanisms,
which are not included in our model. For instance, it has
been reported that resonant interactions with energetic
particles can stabilize RWMs [9,28], and the effect of such
interactions on the excitation mechanism described in this
Letter should be clarified. As discussed in [9], the resonant
interaction of RWMs with energetic particles depends on
the relationship between the rotation frequency and the
characteristic frequencies of energetic particles, and this
interaction becomes ineffective in some cases. Since the
RWM is basically an MHD mode, the verification of its
stability in the MHD model should be of primary impor-
tance, and the RWM excitation mechanism described here
may constitute a crucial component of RWM physics that
was not considered until now.
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