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In this Letter, the dynamics of a collapsing vapor bubble is addressed by means of a diffuse-interface
formulation. The model cleanly captures, through a unified approach, all the critical features of the process,
such as phase change, transition to supercritical conditions, thermal conduction, compressibility effects,
and shock wave formation and propagation. Rather unexpectedly for pure vapor bubbles, the numerical
experiments show that the process consists in the oscillation of the bubble associated with the emission of
shock waves in the liquid, and with the periodic disappearance and reappearance of the liquid-vapor
interface due to transition to super- or subcritical conditions. The results identify the mechanism of shock
wave formation as strongly related to the transition of the vapor to the supercritical state, with a progressive
steepening of a focused compression wave evolving into a shock which is eventually reflected as an
outward propagating wave in the liquid.
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Vapor bubble collapse is a fascinating classical problem
[1] involving vapor-liquid phase transition and extreme
pressures and temperatures [2,3]. Typical experiments
concern ultrafast imaging and the analysis of light and
sound emitted after the collapse [4–6]; see also the
following review: [7]. Both free cavitation bubbles and
nanobubbles at solid walls are increasingly investigated
[8–10]. In ordinary conditions, gas bubble nucleation is
associated with the metastability of the mixture of liquid
and dissolved gas which, once the free energy barrier
between the two states is overcome and the critical nucleus
is formed, evolves toward a finite size bubble. The same
mechanism is at work in forming pure vapor bubbles when
the (ultrapure) liquid is kept in metastable conditions [11];
i.e., its pressure is below the equilibrium vapor pressure at
the given temperature. In these conditions, away from solid
walls (see, e.g., [12] for the role of asperities on solid
surfaces as a catalyst of bubble nucleation), local density
fluctuations can generate the critical vapor nucleus from
which the eventual bubble is formed.
Theoretical modeling of cavitation is challenging due to

intermingled phenomenologies [13,14], such as interface
dynamics [15,16], thermodynamics of phase change [17],
and dissolved gas diffusion [18]. The available descriptions
combine two distinct adjoining regions, liquid and vapor
phase, respectively, with vapor pressure taken to be the
saturation pressure [19]. The phase transition is accounted
for through suitable kinetic equations and latent heat
release [18].
Contrary to available models, the diffuse-interface

approach discussed in the present Letter encompasses all
the involved phases (liquid, vapor, and supercritical) and
phase transitions, embedding capillary forces, compress-
ibility effects, and shock wave propagation. The approach

enables an unprecedented analysis of collapse, where the
bubble interface speed may exceed the speed of sound.
This leads to the formation of a shock wave focused
towards the bubble that is successively reflected back in
the liquid. Latent heat of condensation and rapid compres-
sion locally bring the vapor in supercritical conditions.
This explains the observed rebounds usually considered a
typical feature of incondensable gas bubbles. Indeed, the
liquid-vapor interface may disappear and reappear again,
according to the local thermodynamic conditions.
We exploit an unsteady diffuse-interface description [20]

of the multiphase flow based on the van der Waals gradient
approximation of the free energy functional [21,22]

F½ρ; θ� ¼
Z
Ω

�
f̂0ðρ; θÞ þ

λ

2
j∇ρj2

�
dV; ð1Þ

where λ is a coefficient controlling surface tension and
interface thickness. For a van der Waals fluid, the free
energy per unit volume at temperature θ and density ρ is

f̂0ðρ; θÞ ¼ R̄ρθ

�
−1þ log

�
ρKθδ

1 − bρ

��
− aρ2; ð2Þ

with δ ¼ R̄=cv, R̄ the gas constant, cv the constant volume
specific heat, and a and b the van der Waals coefficients,
with K a suitable constant [23]. The evolution is governed
by the conservation equations for mass ∂tρþ∇ · ðρ uÞ¼ 0,
momentum ∂tðρ uÞ þ∇ · ðρ u ⊗ uÞ ¼ ∇ · τ, and total
energy, ∂tEþ∇ · ð uEÞ ¼∇ · ½τ · u− λρ∇ · u∇ρþ k∇θ�,
where k is the thermal conductivity. The stress tensor,
τ ¼ −p0I þ τv þ τc, with p0 ¼ ρ2∂ðf̂0=ρÞ=∂ρjθ the pres-
sure and τv the classical viscous component, features the
diffused capillary stress (see Supplemental Material [24]),
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:

τc accounts for surface tension σ, defined starting from the
deviatoric component of the equilibrium contribution
(τeq ¼ −p0I þ τc) to the stress tensor, τdev ¼ τeq−
1=3trðτeqÞ ¼ −λ∇ρ ⊗ ∇ρ. Explicitly, σ is given by the
following integral along a one-dimensional cut normal to
the interface:

σ ¼ −
Z þ∞

−∞
ν · ðτdev · νÞdn ¼

Z þ∞

−∞
λ

�
dρ
dn

�
2

dn;

with n the normal distance across the interface, and ν the
unit normal to the cut (tangent to the interface). The integral
is restricted to the region of thickness Δn ∝

ffiffiffi
λ

p
where

dρ=dn is substantially different from zero, resulting in σ ¼R
ρL
ρV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λwðρÞp

dρ ∝
ffiffiffi
λ

p
[24,31], where L and V denote

liquid and vapor, respectively.
The latent heat released during the phase change, θΔη,

with η ¼ −∂f0=∂θjρ the entropy per unit mass, is implicitly
included in the model. Hence, the model intrinsically
features the phase transition whenever the local thermo-
dynamic conditions are appropriate, as shown by the
temperature equation

ρcv
Dθ

Dt
¼ −ρθ

∂η
∂ρ

����
θ

Dρ

Dt
þ τv∶ ∇uþ∇ · ðk∇θÞ: ð3Þ

Along the phase transition, the factor θ∂η=∂ρjθ basically
consists of the amount of heat required to change the state
by dρ. Assuming, for the sake of definiteness, an isothermal
transformation in subcritical conditions, the integral of
this term from vapor to liquid state is indeed the latent heat,
θΔη. Consistently with physical expectation, the van der
Waals model prescribes a latent heat release only in
subcritical conditions. In supercritical conditions, the same
term is related to the isochoric thermal pressure coefficient
ð1=pÞð∂η=∂vÞjθ ¼ ð1=pÞð∂p=∂θÞjv, with v the specific
volume. Clearly, during the actual evolution, the thermo-
dynamic transformation followed by a material element is
not isothermal, the actual transformation being dictated by
mass, momentum, and energy conservation.
The model can, in principle, be extended to a more

sophisticated equation of state (EoS) than the van der
Waals’, when a direct comparison with experiments is
sought for; see, e.g., [32] where an empirical EoS is used to
include dissociation and ionization effects which become
relevant in the late stage of the collapse.
The system of conservation laws to be solved constitutes a

quite nonstandard problem that requires specialized numeri-
cal techniques. We list here a few issues to provide a flavor of
the numerics used in the simulations; see Supplemental
Material, Sec. B [24] for detailsd supercritical fluid

compressibility gives rise to shock waves propagat.
(i) The extremely thin liquid-vapor interface calls for a high
numerical resolution. (ii) Liquid, vapor, aning in a nonuni-
form, multiphase environment. (iii) The system is partly
controlled by acoustics (hyperbolic behavior) and partly by
viscosity and capillarity (diffusion and dispersion, respec-
tively). (iv) Although the sound speed, c2 ¼ ∂p0=∂ρjη, is
well defined in most of the phase space (c2 > 0), a region
exists below the spinodal where c2 < 0. This hybrid
behavior [33] is the cause of the failure for the standard
hyperbolic solvers.
The model described above is used to perform numerical

simulations of a spherically symmetric, pressure-induced
bubble collapse. A vapor nanobubble with radius Req is
initially in equilibrium and the collapse is initiated by an
overpressure enforced on the liquid, ðp∞ − peÞ=pe ¼ Δp=
pe > 0, where pe is the liquid equilibrium pressure. Cases
differing for overpressure and for thermal conductivity,
measured by Pr ¼ 3μR̄=ð8kÞ, are considered to analyze
their effects on the collapse dynamics. In all cases, the
initial temperature is θe=θc ¼ 0.5 and the surface tension is
σ=ðpcReqÞ ¼ 0.045. Using the parameters for water
(σ ¼ 0.075 N=m, pc ¼ 22 MPa, where the subscript c
denotes critical values), the corresponding equilibrium
radius is Req ≃ 75 nm.
Along the evolution, irrespective of the fluid state inside

the bubble (either vapor or supercritical), the bubble radius
is defined as the distance of the liquid from the bubble
center; see Fig. 1 where data are shown for different Δp=pe
and Pr. The dynamics consists of a sequence of rebounds
and collapses associated with shock formation. The col-
lapse time of a macroscopic bubble is estimated as
tc ¼ 0.915Req

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ∞=ðp∞ − pvÞ

p
, with pv the bubble equi-

librium pressure, where capillary, viscous, and compress-
ibility effects are neglected [13,14]. For nanobubbles,
however, surface tension is crucial and the numerical
results suggest the scaling

tc ¼ 0.915Req

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ∞

p∞ − pv þ 2σ=Req

r
¼ 0.915Req

ffiffiffiffiffiffiffi
ρ∞
Δp

r
:

Before the first collapse, the radius evolution is indepen-
dent of thermal conductivity with a slight sensitivity to the
overpressure. Although predicted by models of inconden-
sable gas bubbles [14], rebounds are missed by simplified
models which neglect the inner vapor dynamics. The
rebounds are affected by thermal conductivity and over-
pressure, Fig. 1. The radius where the first collapse phase
ends, and the successive rebound starts, increases with the
overpressure, suggesting the presence of an incondensable
gaseous phase inside the bubble. The increase of the over-
pressure leads to faster dynamics; see the expression of tc,
resulting in increased pressure inside the bubble. An
enhanced thermal conductivity, solid lines in Fig. 1, reduces
the subsequent oscillations of the bubble by diffusing
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thermal energy from the hotter bubble to the colder liquid. In
the limit of Pr → 0, the isothermal Keller model with no
rebounds and complete vapor condensation is recovered.
The shock position s ¼ sðtÞ is provided in the inset of

Fig. 1. The seemingly different velocity is an artifact of the
Δp-dependent time scale tc. In fact w ¼ _s is fairly constant.
Away from the bubble, the shock propagates in the still
liquid that, after the expansion wave, relaxed back to p∞,
θ∞ ¼ θe. The shock speed w is determined by the state
ahead of the shock (p∞; ρ∞; u∞ ¼ 0) and by an additional
parameter, the density ρb behind the shock, say; see [34]
and [23] for details concerning a van der Waals fluid. The
small compressibility of the liquid ðρb − ρ∞Þ=ρ∞ ≪ 1
allows the linearization w¼ c∞þα∞ðρb−ρ∞Þ=ρ∞, where
c∞ is the unperturbed sound speed in the liquid and
α∞ðp∞; ρ∞Þ ¼ ρ∞dw=dρj∞. It turns out that w≃ c∞ for
the cases explicitly reported here (more precisely,
ðw − c∞Þ=c∞ ≤ 3%).

The main plot in the top panel of Fig. 2 shows the
pressure profile through the bubble center for the initial
phase of the process up to the bubble collapse. The
corresponding density profiles are provided in the inset.
Initially (solid, dashed, and dash-dotted lines), the location
of the interface is identified by an extremely sharp density
drop. The bubble shrinks while the vapor density, pressure,
and temperature (main plot in the bottom panel) increase.
Successively, the shrinkage accelerates, the gaseous phase
is compressed, its temperature raises, and the fluid tran-
sitions to supercritical conditions (p=pc > 1, θ=θc > 1).
During this phase the inner vapor core is surrounded by a
shell of supercritical fluid whose density increases through
a strong density gradient to eventually adjoin the external
liquid. Later, the vapor disappears altogether, transformed
into a low density supercritical fluid. Subsequently pressure
and temperature peaks in the profile keep increasing. The
late collapse phase is dominated by a strong pressure wave
propagating in a homogeneous supercritical fluid which
focuses into a converging shock (see Supplemental
Material, Sec. C [24] for the comparison with a supercriti-
cal converging shock). Pressure and temperature extrema
are reached at the first collapse time tc, when the inner low
density core disappears.
In the inset of the bottom row of Fig. 2 we analyze the

thermal aspects, Eq. (3), in particular the heat release
rate −ρθð∂η=∂ρÞjθDρ=Dt. Let us consider the splitting
−ρθ∂η=∂ρjθ ¼ Hql þ α, where H is the characteristic
function of the coexistence region (H ¼ 1 for states below
the coexistence curve and 0 otherwise). The contribution
due to the phase change is ql ¼ ρθ½ηVðθÞ − ηLðθÞ�=
½ρLðθÞ − ρVðθÞ� and the corresponding heat release rate
Hql _ρ is displayed in inset (a) of Fig. 2. The complementary
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FIG. 1 (color online). Top: Time evolution of the bubble radius
for various cases with the prediction of the Keller model [15]
shown by the dotted line. The collapse of the bubble is induced by
an overpressure in the liquid, Δp ¼ p∞ − pe. The other control
parameters are Pr defined in the text, a measure of thermal
conductivity, and Re ¼ ffiffiffiffiffiffiffiffiffiffi

pcρc
p

Req=μ and C ¼ λρ2c=ðpcR2
eqÞ, play-

ing the role of a Reynolds and aWeber number; see Supplemental
Material, Sec. A for their detailed definition [24]. In correspon-
dence with the first bubble rebound, a shock wave is radiated in
the liquid. The shock position sðtÞ is shown in the inset. Bottom:
Successive snapshots of the system configuration. Density field
(upper row) and pressure gradient intensity (lower row) in
arbitrary units for p∞ − pv ¼ 0.01pc and Pr ¼ 0.2. The plots
in the lower row highlight the position of bubble interface and
radiated shock.
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FIG. 2. Radial profiles before the first bubble rebound. The
different line styles correspond to successive time instants
(solid: t=tc ¼ 0, dashed: t=tc ¼ 0.64, dash-dotted: t=tc ¼ 0.85,
dotted: t=tc ¼ 0.96, long-dashed: t=tc ¼ 0.97, dash-dot-dotted:
t=tc ¼ 0.98). The top panel shows the pressure with density in the
inset. The bottom panel shows the temperature and the two
contributions to the heat release in the insets: (a) the nondimen-
sional latent heat q�l ¼ Hql _ρ=ðp3=2

c ρ−1=2c R−1
eq Þ, (b) α� ¼ α_ρ=

ðp3=2
c ρ−1=2c R−1

eq Þ.
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contribution α_ρ is too small to be appreciated in the plot.
At later times, inset (b), the fluid in the bubble becomes
supercritical, i.e., Hql ¼ 0, and the term α_ρ becomes
substantial [for ideal gases α ¼ R̄θ, while in general
α ¼ θβp=ðκθρÞ, where thermal compressibility and the
thermal expansion coefficient are κθ ¼ −ð1=vÞ∂v=∂pjθ
and βp ¼ ð1=vÞ∂v=∂θjp, respectively].
After reaching the bubble center, the shock is reflected

and propagates toward the liquid, Fig. 3. The pressure
peaks ahead of the shock follows the scaling law ps ∝ 1=s,
inset of Fig. 3, as predicted by the compressible Hickling-
Plesset model [35] for incondensable gas bubbles. After
reflection, the fluid near the bubble center expands back
and its temperature and pressure drop quickly. The fluid
transitions back to vapor with the reappearance of the
liquid-vapor interface. The expansion continues up to a
maximum radius when the motion reverts and the process
repeats itself.
As already mentioned, the liquid-vapor interface may

disappear and reappear several times during the process.
In Fig. 4 the liquid-vapor interface position is compared
with the bubble radius, whose definition as the distance of
the liquid from the bubble center still holds when the inner
fluid becomes supercritical. The time intervals correspond-
ing to supercritical conditions are highlighted in orange.
Soon after the shock emission, vapor is formed again and
the liquid-vapor interface reappears. The process repeats
until a full condensation is achieved.
Phase change and transition to supercritical conditions

play a crucial role in the collapse of a vapor nanobubble.
Indeed, independently of the intensity of the initial over-
pressure, a strong pressure and temperature increase is
experienced that induces the transition to incondensable
gaseous state. As a consequence, a vapor bubble substan-
tially resembles an incondensable gas bubble, making the

boundary between the two kinds less sharply defined than
usually assumed. The pressure and temperature peaks
increase with ðp∞ − peÞ=pe as the strength of the emitted
shock wave does; see Table I. At fixed thermal conduc-
tivity, a limiting overpressure exists below which the
bubble condenses altogether. Above the critical overpres-
sure oscillations set in, with the bubble periodically
reforming and emitting a shock upon collapse. From the
above considerations it should be expected that a collapsing
bubble could trigger a synchronized collapse of its neigh-
bors. Indeed, the pressure at the distance r ¼ Req from the
bubble center is substantially larger than the initial over-
pressure, Table I. Accounting for the 1=r decay of the
pressure peak, the pressure of the wave exceeds the initial
overpressure in a region extending for, typically, 20Req.
The present model for vapor-bubbles collapse can be

extended under several respects. (a) Incondensable gas
dissolved in the liquid can be taken into account by
extending the basic free energy functional, Eq. (1), to
include the composition of the mixture. (b) More realistic
transport coefficients can be assumed, e.g., dependence of
viscosity and thermal conductivity on thermodynamic
conditions can be included. (c) A more general EoS can
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FIG. 3. Radial profiles after the first bubble rebound. The
different line styles correspond to successive time instants
(dash-dotted: t=tc ¼ 1.005, dotted: t=tc ¼ 1.01, long-dashed:
t=tc ¼ 1.02, dash-dot-dotted: t=tc ¼ 1.03). The top panel shows
the temperature with density in the inset. The bottom panel shows
the pressure. In the inset the Hickling-Plesset power law for the
shock peak attenuation is compared with the simulations.
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FIG. 4 (color online). Comparison between the bubble radius
and the position of the liquid-vapor interface. The bubble radius is
defined irrespective of the nature of the gaseous phase inside the
bubble, either the vapor or the supercritical fluid. The interface is
defined as the boundary between vapor and liquid. The bubble
radius changes continuously in time, up to the complete con-
densation and disappearance of the bubble (blue region). The
interface disappears (orange regions) when the fluid inside the
bubble transitions to supercritical state.

TABLE I. Pressure and temperature peaks in the collapsing
bubble as a function of the initial overpressure. The intensity of
the pressure wave at one radius from the bubble center is shown
in the last column.

ðp∞ − peÞ=jpej pmax=pc θmax=θc ðpr¼Req
− peÞ=jpej

1.43 1764 8.58 31.7
0.95 339 4.53 22
0.63 190 3.53 15.9
0.073 52.8 2.01 6.6

PRL 114, 064501 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 FEBRUARY 2015

064501-4



be adopted to take into account dissociation and ionization
effects which are expected to quantitatively modify
the dynamics of the collapse, reducing peak temperature
and pressure, while maintaining the overall phenomenol-
ogy basically unchanged.
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