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We present the full analytic result for the three loop angle-dependent cusp anomalous dimension in
QCD. With this result, infrared divergences of planar scattering processes with massive particles can be
predicted to that order. Moreover, we define a closely related quantity in terms of an effective coupling
defined by the lightlike cusp anomalous dimension. We find evidence that this quantity is universal for any
gauge theory and use this observation to predict the nonplanar nf-dependent terms of the four loop cusp
anomalous dimension.
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Understanding the structure of soft and collinear diver-
gences is of great theoretical interest in quantum field
theory. It is also relevant for phenomenological applications
such as the production of heavy particles at the LHC, where
effects from soft gluon radiation need to be resummed in
order to improve theoretical predictions.
It is well known that the infrared (or long-distance)

asymptotics of scattering amplitudes is described by
correlation functions of Wilson lines pointing along the
momenta of the scattered particles [1,2]. The latter satisfy
evolution equations with the corresponding anomalous
dimension being, in general, a matrix in color space. In
the planar limit, this matrix is expressed in terms of the two-
line cusp anomalous dimension [3]. The two loop result for
this fundamental quantity has been known for more than 25
years [4]; see, also, Ref. [5]. Here we report on the full
result for the cusp anomalous dimension in QCD at
three loops.
To compute the cusp anomalous dimension, we consider

the vacuum expectation value of the Wilson line operator

W ¼ 1

N
h0jtr

�
P exp

�
i
I
C
dxAðxÞ

��
j0i; ð1Þ

with AμðxÞ ¼ Aa
μðxÞTa and Ta being the generators of the

fundamental representation of the SUðNÞ gauge group.
Here, the integration contour C is formed by two segments
along directions vμ1 and vμ2 (with v21 ¼ v22 ¼ 1), with
(Euclidean space) cusp angle ϕ,

cosϕ ¼ v1v2; ð2Þ

cf. Fig. 1. Perturbative corrections to the Wilson loop (1)
contain both ultraviolet (cusp) and infrared divergences.
We employ dimensional regularization with D ¼ 4 − 2ϵ to
regularize the former and introduce an infrared cutoff using
the heavy quark effective theory framework. The cusp
anomalous dimension Γcusp is extracted as the residue at the
simple pole 1=ϵ in the corresponding renormalization
factor.
It depends on the cusp angle ϕ, the strong coupling

constant αs ¼ g2YM=ð4πÞ, and on SUðNÞ color factors. It is
convenient to introduce the complex variable

x ¼ eiϕ; 2 cosϕ ¼ xþ 1=x: ð3Þ

In Euclidean space jxj ¼ 1, whereas for Minkowskian
angles ϕ ¼ iθ (with θ real), the variable x can take arbitrary

FIG. 1. Sample Feynman diagram producing a contribution to
the three loop cusp anomalous dimension in QCD. Thick lines
denote two semi-infinite segments forming a cusp of angle ϕ, and
wavy lines represent gauge fields.
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non-negative values. Because of the symmetry x → 1=x of
the definition (3), we can assume 0 < x < 1without loss of
generality.
We chose to perform the calculation in momentum

space. We generated all Feynman diagrams contributing
toW up to three loops, in an arbitrary covariant gauge. This
was done with the help of the computer programs QGRAF
and FORM [6]. Using integration by parts relations [7], we
found that a total of 71 master integrals was required. We
derived differential equations for them in the complex
variable x defined in Eq. (3). Switching to a basis of master
integrals ~fðx; ϵÞ as suggested in Ref. [8], we found the
expected canonical form of the differential equations [9],

∂x
~fðx; ϵÞ ¼ ϵ

�
a
x
þ b
xþ 1

þ c
x − 1

�
~fðx; ϵÞ; ð4Þ

with constant (x- and ϵ-independent) matrices a; b; c.

Equation (4) has four regular singular points in x,
namely, 0; 1;−1, and ∞. Thanks to the x → 1=x symmetry
of the definition (3), only the first three are independent.
They correspond, in turn, to the lightlike limit (infinite
Minkowski angle), to the zero angle limit, and to the
antiparallel lines limit. Requiring that the integrals be
nonsingular in the straight-line case x ¼ 1 allowed us to
fix all except one of the boundary conditions, and we
obtained the remaining one from Ref. [10].
It follows from Eq. (4) that the solution for ~f in the ϵ

expansion can be written in terms of iterated integrals with
integration kernels dx=x; dx=ðx − 1Þ; dx=ðxþ 1Þ. The
latter integrals are known as harmonic polylogarithms
Hn1;…;nkðxÞ [11]. The indices ni can take values
0; 1;−1 corresponding to the three integration kernels,
respectively.
To express our results up to three loops, we introduce the

following functions [12]:

A1ðxÞ ¼ ξ
1

2
H1ðyÞ; A2ðxÞ ¼

�
π2

3
þ 1

2
H1;1ðyÞ

�
þ ξ

�
−H0;1ðyÞ −

1

2
H1;1ðyÞ

�
;

A3ðxÞ ¼ ξ

�
−
π2

6
H1ðyÞ −

1

4
H1;1;1ðyÞ

�
þ ξ2

�
1

2
H1;0;1ðyÞ þ

1

4
H1;1;1ðyÞ

�
;

A4ðxÞ ¼
�
−
π2

6
H1;1ðyÞ −

1

4
H1;1;1;1ðyÞ

�

þ ξ

�
π2

3
H0;1ðyÞ þ

π2

6
H1;1ðyÞ þ 2H1;1;0;1ðyÞ þ

3

2
H0;1;1;1ðyÞ þ

7

4
H1;1;1;1ðyÞ þ 3ζ3H1ðyÞ

�

þ ξ2
�
−2H1;0;0;1ðyÞ − 2H0;1;0;1ðyÞ − 2H1;1;0;1ðyÞ −H1;0;1;1ðyÞ −H0;1;1;1ðyÞ −

3

2
H1;1;1;1ðyÞ

�
;

A5ðxÞ ¼ ξ

�
π4

12
H1ðyÞ þ

π2

4
H1;1;1ðyÞ þ

5

8
H1;1;1;1;1ðyÞ

�
þ ξ2

�
−
π2

6
H1;0;1ðyÞ −

π2

3
H0;1;1ðyÞ −

π2

4
H1;1;1ðyÞ

−H1;1;1;0;1ðyÞ −
3

4
H1;0;1;1;1ðyÞ −H0;1;1;1;1ðyÞ −

11

8
H1;1;1;1;1ðyÞ −

3

2
ζ3H1;1ðyÞ

�

þ ξ3
�
H1;1;0;0;1ðyÞ þH1;0;1;0;1ðyÞ þH1;1;1;0;1ðyÞ þ

1

2
H1;1;0;1;1ðyÞ þ

1

2
H1;0;1;1;1ðyÞ þ

3

4
H1;1;1;1;1ðyÞ

�
;

B3ðxÞ ¼
�
−H1;0;1ðyÞ þ

1

2
H0;1;1ðyÞ −

1

4
H1;1;1ðyÞ

�
þ ξ

�
2H0;0;1ðyÞ þH1;0;1ðyÞ þH0;1;1ðyÞ þ

1

4
H1;1;1ðyÞ

�
;

B5ðxÞ ¼
x

1 − x2

�
−
π4

60
H−1ðxÞ −

π4

60
H1ðxÞ − 4H−1;0;−1;0;0ðxÞ þ 4H−1;0;1;0;0ðxÞ − 4H1;0;−1;0;0ðxÞ

þ 4H1;0;1;0;0ðxÞ þ 4H−1;0;0;0;0ðxÞ þ 4H1;0;0;0;0ðxÞ þ 2ζ3H−1;0ðxÞ þ 2ζ3H1;0ðxÞ
�
; ð5Þ

where ξ ¼ ð1þ x2Þ=ð1 − x2Þ and y ¼ 1 − x2. The sub-
script of A indicates the (transcendental) weight of the
functions. Moreover, we introduce the abbreviation ~Ai ¼
AiðxÞ − Aið1Þ and similarly for ~Bi.
Performing the three loop computation, we repro-

duced the expected structure of UV divergences of

W in the MS scheme, as well as the heavy quark
effective theory wave function renormalization [10], for
arbitrary values of the gauge parameter in the covariant
gauge. As yet another check, the dependence on the
gauge parameter disappeared for the cusp anomalous
dimension.
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Let us write the expansion in the coupling constant as

Γcuspðαs; xÞ ¼
X
k≥1

�
αs
π

�
k
ΓðkÞ
cuspðxÞ: ð6Þ

The previously known one and two loop [4] results can be
written as

Γð1Þ
cusp ¼ CF

~A1; ð7Þ

Γð2Þ
cusp ¼ 1

2
CFCA½ ~A3 þ ~A2� þ

�
67

36
CFCA −

5

9
CFTFnf

�
~A1:

ð8Þ

At three loops, we find

Γð3Þ
cusp ¼ c1CFC2

A þ c2CFðTFnfÞ2 þ c3C2
FTFnf

þ c4CFCATFnf; ð9Þ

with

c1 ¼
1

4
½ ~A5 þ ~A4 þ ~B5 þ ~B3� þ

67

36
~A3 þ

29

18
~A2

þ
�
245

96
þ 11

24
ζ3

�
~A1; ð10Þ

c2 ¼ −
1

27
~A1; c3 ¼

�
ζ3 −

55

48

�
~A1; ð11Þ

c4 ¼ −
5

9
½ ~A3 þ ~A2� −

1

6

�
7ζ3 þ

209

36

�
~A1: ð12Þ

Here, CF ¼ ðN2 − 1Þ=ð2NÞ and CA ¼ N are the quadratic
Casimir operators of the SUðNÞ gauge group in the
fundamental and adjoint representation, respectively, nf
is the number of quark flavors, and TF ¼ 1=2.
The following comments are in order. The cusp anoma-

lous dimension has a branch cut for x lying on the negative
real axis. The results given in Eq. (9) are valid for 0 <
x < 1 and can be analytically continued to other regions
according to this choice of branch cuts [13].
The leading n2f term in Eq. (9) is in agreement with the

known result [14]. We reported on the nf-dependent part of
Eq. (9) in Ref. [15]. The expression for the coefficient c1
is new.
As a check of our result, we can consider Minkowskian

angles and take the lightlike limit, x ¼ e−θ with θ → ∞, of
Eq. (9), where one expects the behavior [16]

Γcuspðαs; xÞ ¼x→0KðαsÞ logð1=xÞ þOðx0Þ; ð13Þ

with KðαsÞ being the lightlike cusp anomalous dimension.
To three loops, it is given by [17]

Kð1Þ ¼ CF;

Kð2Þ ¼ CACF

�
67

36
−
π2

12

�
−
5

9
nfTFCF;

Kð3Þ ¼ C2
ACF

�
245

96
−
67π2

216
þ 11π4

720
þ 11

24
ζ3

�

þ CACFnfTF

�
−
209

216
þ 5π2

54
−
7

6
ζ3

�

þ C2
FnfTF

�
ζ3 −

55

48

�
−

1

27
CFðnfTFÞ2; ð14Þ

where KðαsÞ ¼
P

m≥1ðαs=πÞmKðmÞ. We found perfect
agreement for all terms.
Finally, if the conformal symmetry of (massless) QCD

were not broken, one would expect that the cusp anomalous
dimension should be related in the antiparallel lines limit
ϕ ¼ π − δ, δ → 0, to the quark-antiquark potential [18] (at
one loop order lower compared to Γcusp). Starting from
Eq. (9), we indeed find perfect agreement with the result
quoted in the second of Ref. [19], up to conformal
symmetry breaking terms proportional to the QCD β
function.
Our result for the cusp anomalous dimension is valid

in the MS (dimensional regularization) scheme. Going
to the DR (dimensional reduction) scheme amounts to a
finite renormalization of the coupling constant. We can
introduce a quantity Ω which is the same in both
schemes by switching from αs to an “effective cou-
pling” a,

Ωða; xÞ≔Γcuspðαs; xÞ; a≔π=CFKðαsÞ; ð15Þ

where Γcusp and KðαsÞ are evaluated in the same scheme
(and for the same theory). By construction, Ω has the
universal limit

Ωða; xÞ ¼x→0 a
π
CF logð1=xÞ þOðx0Þ; ð16Þ

as one can easily verify by comparing to Eq. (13).
Using the results up to three loops given in Eqs. (7)–(9)

and (14), and expanding both sides of the first relation in
Eq. (15) to third order in αs, we find

Ωða; xÞ ¼ a
π
CF

~A1 þ
�
a
π

�
2 CACF

2

�
~A3 þ ~A2 þ

π2

6
~A1

�

þ
�
a
π

�
3 CFC2

A

4

�
~A5 þ ~A4 − ~A2 þ ~B5 þ ~B3

þ π2

3
~A3 þ

π2

3
~A2 −

π4

180
~A1

�
þOða4Þ: ð17Þ

Remarkably, this quantity is independent of nf to three
loops. Comparing to Eq. (15), we see that this means that,
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e.g., all nf-dependent terms in Γð3Þ
cusp are generated from

lower loop terms when expanding KðαsÞ in αs.
In Fig. 2, we plot the one, two, and three loop

coefficients of Ω in an expansion of a=π, for
Minkowskian angles θ, i.e., x ¼ e−θ for the range
θ ∈ ½0; 4�, and with the number of colors set to N ¼ 3.
Note that the nf dependence in QCD can be obtained from
Eq. (15) and amounts to a rescaling of the coupling. At
large θ, the one loop contribution displays the linear
behavior of Eq. (16), while the two and three loop
contributions go to a constant, as expected. In the small-
angle region, we have

Ωða; e−θÞ ¼ CF

��
a
π

�
1

3
þ
�
a
π

�
2CA

4

�
1−

π2

9

�

þ
�
a
π

�
3C2

A

12

�
−
5

3
−
π2

6
þ π4

20
− ζ3

�
þOða4Þ

�
θ2

þOðθ4Þ: ð18Þ

The observed nf independence of Ωða; xÞ leads us to
conjecture that the latter quantity is universal in gauge
theories, i.e., independent of the specific particle content of
the theory. Assuming this conjecture leads to a number of
nontrivial predictions, as we discuss presently.
First, let us recall the known value for K inN ¼ 4 super

Yang-Mills theory (in the DR scheme) [20],

KN¼4ðαsÞ ¼ CF

��
αs
π

�
−
π2

12
CA

�
αs
π

�
2

þ 11

720
π4C2

A

�
αs
π

�
3

þOðα4sÞ
�
: ð19Þ

Plugging this formula and the result for Ω given in Eq. (17)
into Eq. (15) then gives the previously unknown three loop
result for the cusp anomalous dimension for the Wilson
loop operator of Eq. (1) in that theory,

ΓN¼4ðαs; xÞ ¼
αs
π
CF

~A1 þ
CACF

2

�
αs
π

�
2

½ ~A3 þ ~A2�

þ CFC2
A

4

�
αs
π

�
3

½ ~A5 þ ~A4 − ~A2 þ ~B5 þ ~B3�

þOðα4sÞ: ð20Þ

The two loop terms agree with Ref. [15]. As a test of the
three loop prediction, we take the antiparallel lines limit
and obtain

ΓN¼4ðαs; xÞ ¼δ→0 −
CFαs
δ

�
1 −

�
αs
π

�
CA

þ
�
αs
π

�
2

C2
A

�
5

4
þ π2

4
−
π4

64

�
þOðα3sÞ

�

þOðδ0Þ; ð21Þ

as expected from the direct calculation of the quark-
antiquark potential [21].
Second, the conjecture of the nf independence of Ω

can be used to predict the form of the nonplanar nf
corrections that can first appear at four loops. The latter
involve quartic Casimir operators of SUðNÞ, whose con-
tribution we abbreviate by C4 ¼ dabcdF dabcdF =NA ¼ ð18 −
6N2 þ N4Þ=ð96N2Þ [with NA the number of the SUðNÞ
generators] [22]. Consider a term in Γcuspðαs; xÞ of the form
nfðαs=πÞ4gðxÞCFC4=64, for some gðxÞ. Assuming that Ω
defined in Eq. (15) is independent of nf then implies
gðxÞ ¼ g0 ~A1. Moreover, we can determine g0 by comparing
to the antiparallel lines limit. The expected relation to the
known quark-antiquark potential computed (numerically)
in Ref. [23] then yields g0 ¼ −56.83ð1Þ.
In conclusion, we presented the full three loop result for

the cusp anomalous dimension in QCD. The latter allows
us to predict the infrared divergent part of planar scattering
amplitudes of massive particles in QCD to that order.
Moreover, our result can be applied to reduce theoretical
uncertainties both in describing the scale dependence of
heavy meson form factors [1,2] and in computing cross
sections of top-antitop pair production in electron-positron
annihilation and in hadronic collisions [5,24] (for a recent
review, see Ref. [25]).
We observed that the result has a surprisingly simple

dependence on the number of quark flavors nf, which led
us to define a quantity Ω, independent of nf to three loops.
If the latter is the same in any gauge theory, it could be
studied using powerful integrability techniques that have
been developed in N ¼ 4 super Yang-Mills theory; see
Ref. [26] for more details.
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