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We present the full analytic result for the three loop angle-dependent cusp anomalous dimension in
QCD. With this result, infrared divergences of planar scattering processes with massive particles can be
predicted to that order. Moreover, we define a closely related quantity in terms of an effective coupling
defined by the lightlike cusp anomalous dimension. We find evidence that this quantity is universal for any
gauge theory and use this observation to predict the nonplanar n-dependent terms of the four loop cusp

anomalous dimension.
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Understanding the structure of soft and collinear diver-
gences is of great theoretical interest in quantum field
theory. It is also relevant for phenomenological applications
such as the production of heavy particles at the LHC, where
effects from soft gluon radiation need to be resummed in
order to improve theoretical predictions.

It is well known that the infrared (or long-distance)
asymptotics of scattering amplitudes is described by
correlation functions of Wilson lines pointing along the
momenta of the scattered particles [1,2]. The latter satisfy
evolution equations with the corresponding anomalous
dimension being, in general, a matrix in color space. In
the planar limit, this matrix is expressed in terms of the two-
line cusp anomalous dimension [3]. The two loop result for
this fundamental quantity has been known for more than 25
years [4]; see, also, Ref. [5]. Here we report on the full
result for the cusp anomalous dimension in QCD at
three loops.

To compute the cusp anomalous dimension, we consider
the vacuum expectation value of the Wilson line operator

W =%<0ltr [Pexp <i}£dxA(x))] 0, (1)

with A, (x) = Af(x)T* and T“ being the generators of the
fundamental representation of the SU(N) gauge group.
Here, the integration contour C is formed by two segments
along directions ¢ and o5 (with v} =23 =1), with
(Euclidean space) cusp angle ¢,

cos¢h = vy vy, (2)
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cf. Fig. 1. Perturbative corrections to the Wilson loop (1)
contain both ultraviolet (cusp) and infrared divergences.
We employ dimensional regularization with D = 4 — 2¢ to
regularize the former and introduce an infrared cutoff using
the heavy quark effective theory framework. The cusp
anomalous dimension I'¢, is extracted as the residue at the
simple pole 1/e¢ in the corresponding renormalization
factor.

It depends on the cusp angle ¢, the strong coupling
constant @, = g%,/ (4x), and on SU(N) color factors. It is
convenient to introduce the complex variable

x = e, 2cosp =x+ 1/x. (3)
In Euclidean space |x| =1, whereas for Minkowskian
angles ¢p = i6 (with @ real), the variable x can take arbitrary
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FIG. 1. Sample Feynman diagram producing a contribution to
the three loop cusp anomalous dimension in QCD. Thick lines
denote two semi-infinite segments forming a cusp of angle ¢, and
wavy lines represent gauge fields.
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non-negative values. Because of the symmetry x — 1/x of
the definition (3), we can assume 0 < x < 1 without loss of
generality.

We chose to perform the calculation in momentum
space. We generated all Feynman diagrams contributing
to W up to three loops, in an arbitrary covariant gauge. This
was done with the help of the computer programs QGRAF
and FORM [6]. Using integration by parts relations [7], we
found that a total of 71 master integrals was required. We
derived differential equations for them in the complex
variable x defined in Eq. (3). Switching to a basis of master
integrals f(x,¢) as suggested in Ref. [8], we found the
expected canonical form of the differential equations [9],

+ fxe),  (4)

Of(x-¢) _e[x+x+1 x - 1}

with constant (x- and e-independent) matrices a, b, c.
|

”2

M =GH0. A= |5

As(x) = 5[—%21‘11@) —%H1,1,1(Y)] +¢& BH1,0,1(Y)
Ay(x) = {‘%Hm(ﬂ _%Hllll(w]
el S a0+ %

+_

Equation (4) has four regular singular points in x,
namely, 0, 1, —1, and oco. Thanks to the x — 1/x symmetry
of the definition (3), only the first three are independent.
They correspond, in turn, to the lightlike limit (infinite
Minkowski angle), to the zero angle limit, and to the
antiparallel lines limit. Requiring that the integrals be
nonsingular in the straight-line case x = 1 allowed us to
fix all except one of the boundary conditions, and we
obtained the remaining one from Ref. [10]. .

It follows from Eq. (4) that the solution for f in the e
expansion can be written in terms of iterated integrals with
integration kernels dx/x,dx/(x —1),dx/(x+ 1). The
latter integrals are known as harmonic polylogarithms
H, ,(x) [11]. The indices n; can take values
0,1,—1 corresponding to the three integration kernels,
respectively.

To express our results up to three loops, we introduce the
following functions [12]:

+ lHl,l(y)] + c_f[—Ho,l()’) - %Hm()’)] ;

1
H
2 1,1.1()’)},

3 7
Hy (y)+2H;101(y) + §H0,1,1,1()’) +—Hy111(y) +383H, ()’)]

4

3
2

+ & {—2H1,0,0,1(Y) —2H101(y) =2H 101(y) = Hi011(y) = Ho111(y) _Hl,l,l,l(y):|’

P b4 5 ?
As(x) = 5[—1'11 () +—H11(v) +_Hl.1,l.l,l(y):| +& |:__Hl,0.1(y) -3

4

3
—H1,1,1,0,1(Y> - ZH1,0,1,1,1()’) —Hpi11. (Y)

8

n? n?

H0.1,1(Y) __Hl.l,l(y)

6 3 4

3
- §H1.1,1.1,1 (Y> - §C3H1.1 (Y)}

1 1 3
+& |:H1,1,0,O,1(y) +Hi0101() +Hi101(0) +5Hi01a0) +5Hio1(0) + ZH1,1,1,1,1()’)} )

2 2

Ba(5) = [~Ha () + 3 Hoaa ) = 3 00| + €[ 200, 0) + Hr000) + Hoaa ) + 3 Ha )]

4
X 7[4 ﬂ4
Bs(x) = -2 _@H—l(x) - @Hl(x) —4H_ o _100(x) +4H_;0100(x) =4H;0_100(x)
+4H 01.00(x) +4H_; 0000(x) +4H;0000(x) +203H_ o(x) + 2§3H1,0(x)} ; (5)

where &= (1+x?)/(1 —x*) and y =1 —x* The sub-
script of A indicates the (transcendental) weight of the
functions. Moreover, we introduce the abbreviation A; =
A;(x) —A;(1) and similarly for B,;.

Performing the three loop computation, we repro-
duced the expected structure of UV divergences of

I

W in the MS scheme, as well as the heavy quark
effective theory wave function renormalization [10], for
arbitrary values of the gauge parameter in the covariant
gauge. As yet another check, the dependence on the
gauge parameter disappeared for the cusp anomalous
dimension.
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Let us write the expansion in the coupling constant as
e\ Lo
1—‘cusp(aj x) = Z - FCUSP(x>' (6)
NG

The previously known one and two loop [4] results can be
written as

r£111)sp = C/A,, (7)
1 ~ ~ 67 5 -
o, = 5 CrCalAs + 4] + (3 £CrCa—g CFTan>A1.
(8)
At three loops, we find
F((::L;llp = ClCFCi + C2CF(TFl’lf)2 + C3C%;Tpnf
+ C4CFCATan, (9)
with
1 - ~ ~ ~ 67~ 29~
c1=[As+ A4+ Bs+ B3]+ As + g4
4 36
245 11
— 10
+ (96 + Cz) (10)
1 55
(&) —_EAlv <4’3—&)A1, (11)
5 - ~ 1 209
=——[A;+A 7 A 12
4 9[ 3+ As] = ( {3+ 36) (12)

Here, Cy = (N> —1)/(2N) and C, = N are the quadratic
Casimir operators of the SU(N) gauge group in the
fundamental and adjoint representation, respectively, ns
is the number of quark flavors, and T = 1/2.

The following comments are in order. The cusp anoma-
lous dimension has a branch cut for x lying on the negative
real axis. The results given in Eq. (9) are valid for 0 <
x < 1 and can be analytically continued to other regions
according to this choice of branch cuts [13].

The leading n7 term in Eq. (9) is in agreement with the
known result [14]. We reported on the n;-dependent part of
Eq. (9) in Ref. [15]. The expression for the coefficient c,
is new.

As a check of our result, we can consider Minkowskian
angles and take the lightlike limit, x = e~ with § — oo, of
Eq. (9), where one expects the behavior [16]

Teusp (. x) =K () log(1/x) + O(%),  (13)

with K(a;) being the lightlike cusp anomalous dimension.
To three loops, it is given by [17]

KW = Cp,

K® =C,Cr <§—2—’1’—2> —gnfTFcF,

o= (- o)
< 0 L)
+CanTp<C3 4512) 217C (npr) , o (14)

where K(ay) =3",51(a,/7)"K™. We found perfect
agreement for all terms.

Finally, if the conformal symmetry of (massless) QCD
were not broken, one would expect that the cusp anomalous
dimension should be related in the antiparallel lines limit
¢ =nm—96,6— 0, to the quark-antiquark potential [18] (at
one loop order lower compared to T'y,). Starting from
Eq. (9), we indeed find perfect agreement with the result
quoted in the second of Ref. [19], up to conformal
symmetry breaking terms proportional to the QCD p
function.

Our result for the cusp anomalous dimension is valid
in the MS (dimensional regularization) scheme. Going
to the DR (dimensional reduction) scheme amounts to a
finite renormalization of the coupling constant. We can
introduce a quantity € which is the same in both
schemes by switching from a; to an “effective cou-

pling” a

Q(a, x):=Tgy5p (s X), a=n/CpK(ay), (15)
where I, and K(a,) are evaluated in the same scheme
(and for the same theory). By construction, © has the
universal limit

Q(a,x)X;()J%CF log(1/x) + O(x), (16)

as one can easily verify by comparing to Eq. (13).

Using the results up to three loops given in Egs. (7)-(9)
and (14), and expanding both sides of the first relation in
Eq. (15) to third order in a, we find

2CsCr

a ~ a

Q(a,x) = ;CFA] + <;>
3C C2

+<ﬂ> F4 [A5+A4—A2+85+B3

7[2 ][2 4
A A
t3At3Ah g

~ ~ 7[2 ~
[RSRESY

1} +O®a%). (17)

Remarkably, this quantity is independent of n, to three
loops. Comparing to Eq. (15), we see that this means that,
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FIG. 2. 6 dependence of the cusp anomalous dimension
Q(a, e™?) at one (solid), two (dashed), and three (dotted) loops.

e.g., all ny-dependent terms in rﬁﬁlp are generated from
lower loop terms when expanding K («y) in a;.

In Fig. 2, we plot the one, two, and three loop
coefficients of Q in an expansion of a/z, for
Minkowskian angles 6, ie., x =e™? for the range
0 € [0,4], and with the number of colors set to N = 3.
Note that the n; dependence in QCD can be obtained from
Eq. (15) and amounts to a rescaling of the coupling. At
large 6, the one loop contribution displays the linear
behavior of Eq. (16), while the two and three loop
contributions go to a constant, as expected. In the small-
angle region, we have

a\3¢i( 5 »* N
+(;) E<_§_€+%_§3 +(’)(a) 0

+O(8%). (18)

The observed n, independence of Q(a,x) leads us to
conjecture that the latter quantity is universal in gauge
theories, i.e., independent of the specific particle content of
the theory. Assuming this conjecture leads to a number of
nontrivial predictions, as we discuss presently.

First, let us recall the known value for K in ' = 4 super
Yang-Mills theory (in the DR scheme) [20],

Ky—4(a;) = Cp K%) _gcA <a7)2

1, (a3 .

Plugging this formula and the result for 2 given in Eq. (17)
into Eq. (15) then gives the previously unknown three loop
result for the cusp anomalous dimension for the Wilson
loop operator of Eq. (1) in that theory,

ag , ~  CoCp (g2 ~ ~
FN:4(as7x) - ;CFAI + AZF <;> [Ag +A2]
CrC3 (a\3 ~  ~ ~ -~ -
A <a—> [As + Ay — Ay + Bs + B
4 T
+ O(a). (20)

The two loop terms agree with Ref. [15]. As a test of the
three loop prediction, we take the antiparallel lines limit
and obtain

s=0 Crag ag
Fy—alag. x)'= —FT{l - (;) Ca

N <%>2c3, Eﬁ;—g—ﬂ + O(oé)}
o). (21)

as expected from the direct calculation of the quark-
antiquark potential [21].

Second, the conjecture of the n, independence of €
can be used to predict the form of the nonplanar n,
corrections that can first appear at four loops. The latter
involve quartic Casimir operators of SU(N), whose con-
tribution we abbreviate by C; = d¥°ddw<d /N, = (18 —
6N? + N*)/(96N?) [with N, the number of the SU(N)
generators] [22]. Consider a term in T'¢ygp (e, x) of the form
ny(ay/m)*g(x)CpCy/64, for some g(x). Assuming that Q
defined in Eq. (15) is independent of n, then implies
g(x) = goA,. Moreover, we can determine g, by comparing
to the antiparallel lines limit. The expected relation to the
known quark-antiquark potential computed (numerically)
in Ref. [23] then yields gy = —56.83(1).

In conclusion, we presented the full three loop result for
the cusp anomalous dimension in QCD. The latter allows
us to predict the infrared divergent part of planar scattering
amplitudes of massive particles in QCD to that order.
Moreover, our result can be applied to reduce theoretical
uncertainties both in describing the scale dependence of
heavy meson form factors [1,2] and in computing cross
sections of top-antitop pair production in electron-positron
annihilation and in hadronic collisions [5,24] (for a recent
review, see Ref. [25]).

We observed that the result has a surprisingly simple
dependence on the number of quark flavors ny, which led
us to define a quantity €2, independent of 7 to three loops.
If the latter is the same in any gauge theory, it could be
studied using powerful integrability techniques that have
been developed in N' = 4 super Yang-Mills theory; see
Ref. [26] for more details.
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