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Isolated quantum systems in extreme conditions can exhibit unusually large occupancies per mode. This
overpopulation gives rise to new universality classes of many-body systems far from equilibrium. We
present theoretical evidence that important aspects of non-Abelian plasmas in the ultrarelativistic limit
admit a dual description in terms of a Bose condensed scalar field theory.
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Introduction.—In recent years there have been important
advances in understanding isolated quantum systems in
extreme conditions far from equilibrium. Prominent exam-
ples include the (pre-)heating process in the early Universe
after inflation, the initial stages in collisions of ultra-
relativistic nuclei at giant laboratory facilities, as well as
tabletop experiments with ultracold quantum gases. Even
though the typical energy scales of these systems vastly
differ, they can show very similar dynamical properties.
Certain characteristic numbers can even be quantitatively
the same. One may use this universality to learn from
experiments with cold atoms aspects about the dynamics
during the early stages of our Universe [1].
Ultracold quantum gases are known to exhibit universal

properties near unitarity in the presence of a very large
scattering length a [2,3]. In this work we consider a
different universal regime away from unitarity, which
occurs far from equilibrium and has attracted much
interest recently in the context of nonthermal fixed points
[4–6]. For an interacting Bose gas of density n with an
inverse coherence length described by the momentum
Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

16πan
p

, this novel regime is characterized by an
unusually large mode occupancy fðQÞ ∼ 1=ζ in the dilute
regime where ζ ¼

ffiffiffiffiffiffiffiffi
na3

p
≪ 1. The average density n ¼R

d3p=ð2πÞ3fðpÞ ∼Q3=ζ becomes parametrically large,
reflecting the underlying nonequilibrium distribution
fðpÞ of modes. Because of the large typical occupancies,
the system is strongly correlated and its properties become
insensitive to the details of the underlying model or initial
conditions. The far-from-equilibrium behavior can be
described in terms of universal exponents and scaling
functions [4–9], similar to the description of critical
phenomena in thermal equilibrium.
Such an overoccupation of modes can be found in a

variety of systems in extreme conditions. In heavy-ion
collisions at ultrarelativistic energies, a nonequilibrium
plasma of highly occupied gluon fields with characteristic
momentum Qs is expected to form shortly after the
collision [10,11]. While the running gauge coupling

αðQsÞ is weak for sufficiently largeQs, the system becomes
strongly correlated because the typical gluon occupancy
fgðQsÞ ∼ 1=α is large. Here, the coupling plays the
corresponding role to the diluteness parameter ζ. Indeed,
scaling behavior has been observed in simulations of the
space-time evolution of non-Abelian plasmas [12–16].
In this Letter, we present first theoretical evidence that

important universal properties of these very different
systems far from equilibrium can agree. Since symmetries
and underlying scattering processes for scalar and gauge
theories show profound differences, the observation of
universal dynamics in this case is highly nontrivial. We
employ the largest real-time lattice gauge theory simula-
tions to date to analyze the space-time evolution of non-
Abelian plasmas in the limit of ultrarelativistic energies
[15]. These results are compared to the nonequilibrium
dynamics of scalar Bose fields. To put our studies in the
context of heavy-ion collision experiments, in both cases
we investigate longitudinally expanding systems in three
space dimensions. We consider a relativistic bosonic field
theory with weak coupling parameter λ, for which suitable
atomic model Hamiltonians may be constructed [17].
We will see below that characteristic low-momentum
properties turn out to be in the same universality class
as the corresponding nonrelativistic theory. Moreover, we
generalize our bosonic system to include N real-valued
field components to study the possible dependence of the
universality class on N. For the non-Abelian gluon fields,
we consider two different colors, since no indications for a
significant dependence on a larger number of colors have
been reported so far.
Dynamic universality class.—The universal scaling

behavior of many-body systems in vacuum or thermal
equilibrium is known to be efficiently classified in terms of
universality classes, which are characterized by scaling
exponents and scaling functions. Depending on the range
of momenta, in equilibrium one distinguishes between
infrared and ultraviolet fixed points and associated scaling
properties. In general, scaling behavior of systems far from
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equilibrium can exhibit several distinct momentum
regimes. Related examples for inertial ranges of momenta
showing scaling behavior have been given in the context of
wave turbulence [4–9,18,19].
For the following presentation, we classify dynamic

universality classes in terms of scaling properties of a
time-dependent distribution function and refer for further
discussions in terms of nonthermal renormalization group
fixed points to the literature (see e.g., Ref. [5]). For
longitudinally expanding systems, the distribution func-
tion depends on proper time t, on transverse momentum
pT , and on longitudinal momentum pz ¼ ν=t where ν
denotes the rapidity wave number [20]. In the universal
regime, the distribution is then determined by a time-
independent scaling function fS, an overall scaling with
time described by the scaling exponent α, and two
exponents β and γ for the scaling with transverse and
longitudinal momentum,

fðpT; pz; tÞ ¼ ðQtÞαfSððQtÞβpT; ðQtÞγpzÞ: ð1Þ

Systems belonging to the same universality class have the
same values for α, β, and γ as well as the same form of
fSðpT; pzÞ in a given inertial range of momenta.
The distribution function reflects properties of equal-

time correlation functions of the underlying quantum
field theory. For the massless scalar theory with quartic
interaction λðPaΦaΦaÞ2=4!N for the a ¼ 1;…; N field
components, the anticommutator expectation value
Fðx; x0; t; t0Þ ¼ P

ahfΦaðx; tÞ;Φaðx0; t0Þgi=2N determines
the distribution. In spatial Fourier space, we define F̈ðp;tÞ≡
tt0∂t∂t0Fðp;t;t0Þjt¼t0 and _Fðp; tÞ ≡ ½t∂tFðp; t; t0Þþ
t0∂t0Fðp; t; t0Þ�jt¼t0=2, where time factors are due to the

expansion. The distribution function reads fðp; tÞ þ 1=2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðp; tÞF̈ðp; tÞ − _Fðp; tÞ2

q
[4,19]. A similar definition can

also be given for the gauge field theory with additional
(Coulomb) gauge fixing [15].
We will also assume that the quantum field theory and

the corresponding classical-statistical field theory are in the
same universality class for sufficiently high occupancies
and employ standard lattice simulation techniques to
compute the nonequilibrium time evolution [15]. The
agreement is well established for critical phenomena in
thermal equilibrium and has been verified explicitly for the
nonequilibrium scalar field theory in the highly occupied
regime, where fðp; tÞ ≫ 1=2 such that the “quantum-half”
becomes insignificant [4].
We start our evolution at time t0 from overpopulated

initial conditions, with distribution function fðpT; pz; t0Þ ¼
ðn0=λÞΘ½Q −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ ðξ0pzÞ2

p
�, where n0 parametrizes the

initial amplitude and ξ0 denotes the initial anisotropy of the
distribution function. Universal results are independent of
the choice of the initial conditions and the coupling, and we
have varied t0, n0, ξ0, and λ to verify this. If not stated
otherwise, we present results of the scalar theory for
n0 ¼ 35, ξ0 ¼ 1, and Qt0 ¼ 103 [21].
Figure 1 shows scalar field theory results for the reduced

distribution

~fðpT; tÞ ¼
t
t0

Z
dpz

2πQ
fðpT; pz; tÞ ð2Þ

integrated over rapidity wave number ν ¼ tpz. It is plotted
as a function of transverse momentum for N ¼ 4 at
different times. One observes that it quickly becomes
approximately time independent. With Eq. (1) follows
~fðpT; tÞ ∼ tα−γþ1

R
dpzfS(ðQtÞβpT; pz) such that time

independence implies the scaling relations

α − γ þ 1 ¼ 0; β ¼ 0: ð3Þ
Remarkably, the very same relations have been observed in
Ref. [15] for the non-Abelian gauge theory. We have
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FIG. 1 (color online). The scalar reduced distribution quickly
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explicitly verified that the same relations hold in the scalar
field theory case also for N ¼ 2.
In order to clarify the physics that determines the

universality class, we note that Fig. 1 also exhibits a rather
accurate power law ~fðpT; tÞ ∼ 1=pT for pT ≲Q. Hence,
the particle number per transverse momentum mode
tdn=dpT ∼ pT

~f is uniformly distributed over transverse
momenta and constant as a function of time. Since the
longitudinal momenta are redshifted because of expansion,
one finds pz ≪ pT for typical momentum modes.
Accordingly, the energy distribution per transverse mode
tdε=dpT ∼ p2

T
~f is also independent of time. Thus, there is

effectively neither a particle nor an energy flux in
transverse momentum, which is implied by β ¼ 0 in
Eq. (3).
The existence of a scaling solution where both energy

and particle number are conserved locally in momentum
space is remarkable when contrasted to the discussion in
isotropic systems without longitudinal expansion [18].
There is no single scaling solution conserving both energy
and particle number in the latter case. Instead, a dual
cascade emerges such that in a given momentum range only
one conservation law constrains the scaling solution
[4,7,22]. The fact that for longitudinally expanding systems
both conservation laws are effective in the same momentum
regime works in favor of a large universality class encom-
passing rather different systems. For instance, the exponent
β ¼ 0 is entirely fixed by enforcing both conservation laws
without further knowledge about the underlying dynamics.
Consequently, one may expect the same exponent to appear
in a larger class of isolated systems, which are dominated
by number conserving processes and undergo a longi-
tudinal expansion. In contrast, α, γ, and the scaling function
fS are not fixed by conservation laws, and the observation
that theories with different symmetry groups and number of
field components can exhibit common universal aspects is
intriguing.

The conservation laws indicate that modes are redistrib-
uted along the longitudinal direction. This has been
analyzed in detail for the corresponding gauge theory in
Ref. [15]. Figure 2 shows our results for the scalar theory
for intermediate pT ∼Q=2, where the rescaled distribution
as a function of the rescaled longitudinal momentum is
given for different times. According to Eq. (1), this fixed
point distribution should be independent of time, and
indeed, we find that all data collapse onto a single curve
using the scaling exponents

α ¼ −2=3; γ ¼ 1=3 ð4Þ

to a few percent accuracy in accordance with the scaling
relation (3). The very same exponents (4) were found to
characterize the gauge theory [15,23]. For the latter, we also
give our results for the normalized fixed point distribution
in Fig. 2. The Gaussian-shaped curve with width squared
σ2zðpTÞ ¼

R
dpzp2

zfðpT; pz; t1Þ=
R
dpzfðpT; pz; t1Þ for the

scalar theory is seen to accurately agree with the corre-
sponding gauge theory case. These results are therefore a
striking manifestation of universality.
Inertial range and Bose condensation.—We shall now

analyze the full momentum dependence of the spectra to
determine the inertial range of this universal regime and to
search for possible additional infrared and ultraviolet fixed
points. Figure 3 shows the scalar distribution function at
vanishing longitudinal momentum for different times. The
data is forN ¼ 4, but we find similar results also forN ¼ 2.
Apart from ∼1=pT behavior at intermediate momenta, one
observes a distinct infrared regime below the momentum
scale where the occupation number becomes larger than
∼1=λ. The infrared spectrum is isotropic in this regime [24]
and described by an approximate power law ∼1=p5.
We conclude that the very high occupancies at low
momenta enhance scattering rates to overcome the rate
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of longitudinal expansion. The situation is very similar to
that of nonexpanding systems, where a nonthermal infrared
fixed point was previously observed for scalar field theories
[4–9,19]. In particular, the scaling behavior agrees with
the inverse particle cascade found in nonrelativistic Bose
gases without expansion, where the observed scaling
exponent characterizes superfluid turbulence in three spa-
tial dimensions [6–9].
While this infrared regime limits from below the 1=pT

behavior at intermediate momenta, Fig. 3 shows that the
bound shifts towards lower momenta at later times. The
inertial range satisfying the 1=pT power law increases with
time on a logarithmic scale, confirming it to be a robust
property of the far-from-equilibrium scalar dynamics. We
have verified that the scaling behavior (1) with the
exponents of Eqs. (3) and (4) is realized in the entire
momentum region described by the 1=pT power law for
both the scalar and the gauge field theory. In Fig. 4, we
show the corresponding results for the gauge theory
distribution function. The ∼1=pT behavior is seen in nearly
the entire momentum range. A relative enhancement is
observed in the deep infrared regime, which is, however, far
weaker than the corresponding behavior in the scalar
theory; it remains to be seen whether this enhancement
becomes stronger at later times. Regardless, the concept of
a gauge-dependent number distribution is problematic at
low momenta, and further studies in this regime should
concentrate on gauge-invariant correlation functions. Such
an analysis would also be important in view of speculations
about a strong infrared enhancement for overpopulated
gauge fields [25], where the formation of a Bose con-
densate is debated.
For nonexpanding scalar theories, the nonthermal infra-

red fixed point catalyzes the formation of a Bose-Einstein
condensate [8,9,26]. We repeat the corresponding analysis
in the case of longitudinal expansion and search for a

scalar-field zero mode that scales with volume, namely,
Fðp ¼ 0; tÞ ∼ V. This function oscillates, and we take the
period average to illustrate its evolution. The results are
shown in Fig. 5, where we present the time evolution of the
condensate observable for different system sizes. For the
initial conditions employed, there is no condensate at time
t0. Accordingly, as shown in Fig. 5, at early times the ratio
Fðp ¼ 0; tÞ=ðVQ2Þ decreases as the volume is increased.
However, after a transient regime, the ratio becomes
volume independent, signaling the formation of a coherent
zero mode over the entire volume. This time-dependent
condensate evolves in time as ∼ðt=t0Þ−1=3.
We turn finally to higher transverse momenta. For the

scalar theory, one observes from Fig. 3 that at the latest
available times of t=t0 ∼ 85 a flat distribution for pT ≳Q
emerges. The distribution function in this inertial range still
exhibits self-similar behavior (1) with the relations of
Eq. (3), albeit with a different scaling function fS.
Moreover, we infer a scaling of pz characterized by the
exponent γ ¼ 1=2 in this large pT region. As a conse-
quence, for all times considered, a significant broadening of
the longitudinal distribution occurs for these hard trans-
verse momenta as well. The systematics of this regime of
hard transverse momenta will be discussed in more detail
elsewhere [24]. In contrast, the gauge theory, for the shorter
times explored, shows no such additional scaling regime at
hard momenta.
Conclusions.—We reported evidence of a novel dynami-

cal universality class encompassing longitudinally expand-
ing scalar fields and gauge fields over a characteristic
inertial range of transverse momenta. This observed uni-
versality challenges our understanding of the thermaliza-
tion process of the quark gluon plasma in the limit of very
high energies, where the gauge coupling is weak. Since the
underlying perturbative scattering processes are very differ-
ent for gauge field and scalar degrees of freedom, our
findings point to a much more general principle. Here, the
classification of strongly correlated quantum many-body
systems in terms of nonequilibrium universality classes and
associated scaling properties represents a crucial step. Such
a development also opens intriguing new perspectives to
experimentally access universal properties of systems in
extreme conditions with the help of quantum degener-
ate gases.
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