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Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in
a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show
that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of
angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with
p∥ > p⊥ induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which,
in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular
momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization
progresses in the channel flow and the anisotropic plasma with p⊥ > p∥ due to the dynamo action of MRI
outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient
particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may
explain the origin of high-energy particles observed around massive black holes.
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A fundamental obstacle in our understanding of the
Universe is the need to explain the angular momentum
redistribution in an accretion disk gravitationally rotating
around a central object. It has been proposed that magneto-
rotational instability (MRI) is the most efficient mechanism
for transporting angular momentum outward with inward
mass motion [1,2]. Based on magnetohydrodynamic
(MHD) simulations (e.g., Refs. [3–7]), it has been asserted
that a weakly magnetized disk with an outwardly decreas-
ing angular velocity gradient can provide angular momen-
tum transport at a greatly enhanced rate by generating
MHD turbulence.
While the MHD framework is successful in explaining

the “collisional” accretion disks, it is also important to
study the dynamnics of “collisionless” accretion disks for
some classes of astrophysical objects [8]. The accretion
disk around the supermassive black hole Sagittarius A� at
the center of our Galaxy is believed to be in a collisionless
plasma state. This is because the accretion proceeds
through a hot and low-density plasma in which the proton
temperature is higher than the electron temperature (e.g.,
Ref. [9]). In addition to the nonequilibrium temperature
between protons and electrons, nonthermal high-energy
particles are observed (e.g., Refs. [10–13]).
Motivated by the observation of this collisionless accre-

tion disk, Sharma et al.. [14,15] studied the MRI, including
the effect of pressure anisotropy. Since the MRI involves
the process of magnetic field amplification or dynamo, the
perpendicular pressure is expected to be enhanced in the
double adiabatic approximation [16], which, in turn,
modifies the MHD wave behavior. Meanwhile, because
of the MHD waves generated by pressure anisotropy
instabilities (e.g., Ref. [17]), pressure isotropization occurs

during MRI evolution. Riquelme et al. [18] and Hoshino
[19] performed two-dimensional particle-in-cell (PIC) sim-
ulations and confirmed the excitation of the mirror mode
and the relaxation of pressure anisotropy studied by the
previous fluid-based model [15]. In addition to the pressure
anisotropy effect, the formation of a power-law energy
spectrum during magnetic reconnection was pointed out.
Although the previous two-dimensional PIC simulation

showed the importance of the kinetic accretion disk, the
plasma transport process is generally different depending
on whether it is considered in two-dimensional or three-
dimensional space. The most important determinant of the
efficiency of angular momentum transport in the collision-
less MRI remains an open question. In this Letter, we
investigate for the first time the collisionless MRI using
a three-dimensional PIC simulation and argue that the
angular momentum transport can be enhanced by the
pressure anisotropy.
To study the kinetic accretion disk in three-dimensional

space, we performed a PIC simulation in a local frame
rotating with angular velocityΩ0~ez at a distance r0 from the
central object, and we include Coriolis, centrifugal, and
gravitational forces in the equations of motion. We used
tidal expansion of the effective potential with a constant
q ¼ −∂ lnΩ=∂ ln r at r0, where q is 3=2 for a Keplerian
disk. The equation of motion becomes

d~p
dt

¼ e

�
~Eþ ~v

c
× ~B

�
−mγð2 ~Ω0 × ~v − 2qΩ2

0x~exÞ: ð1Þ

Our scheme was the same as that used in our previous two-
dimensional MRI study, and we assumed that the local
rotating velocity Ω0r0 is much smaller than the speed of
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light [19]. We adopted the shearing box boundary condition
established by MHD simulations [20].
For the initial condition, a drifting Maxwellian velocity

distribution function was assumed in the local rotating
frame with angular velocityΩ0ðr0Þ. The drift velocity in the
y direction vyðxÞ was given by vyðxÞ ¼ rΩðrÞ − rΩ0ðr0Þ≃
−qΩ0ðr0Þx, and the radial velocity vx and the vertical
velocity vz were both zero. In order to save CPU time, we
set up the pair plasma, but the linear behavior of the MRI in
the pair plasma was the same as that of ion-electron
plasmas [19]. A nonrelativistic isotropic plasma pressure
with a high plasma β ¼ 8πðpþ þ p−Þ=B2

0 ¼ 1536 was
assumed, where the electron and positron gas pressures
were related to the thermal velocities vt� by
p� ¼ ð3=2Þm�nv2t�. The initial magnetic field was ori-
ented purely vertical to the accretion disk, i.e.,
~B ¼ ð0; 0; B0Þ. The ratio of the cyclotron frequency to
the disk angular velocity was fixed at Ωc�=Ω0 ¼ �10,
where Ωc� ¼ e�B0=m�c. The grid size Δ was set to
23=2ðvt�=Ωp�Þ, where Ωp� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πne2=m�

p
is the pair

plasma frequency. The Alfvén velocity is defined as
VA ¼ B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πm�n

p
, so that the plasma β is equal to

3v2t�=V
2
A. The parameters used were ðVA=Ω0Þ=Δ ¼ 25,

ðvt�=Ωc�Þ=Δ ¼ 56.4, VA=c ¼ 6.25 × 10−3. Nx, Ny, and
Nz are the grid sizes in the x, y, and z directions,
respectively, and we assumed Nx ¼ Nz ¼ Nz ¼ 300 in

this Letter. Lx ¼ Ly ¼ Lz ¼ ðNxΔÞ=λ ¼ 1.91 is the physi-
cal size normalized by λ ¼ 2πVA=Ω0. The number of
particles per cell was set to Np=cell ¼ 40.
Figure 1 shows the time evolution of the magnetic field

lines (greenish lines) and the structure of the high-density
regions (sandwiched by the reddish curved planes). Color
contours in the background at Y ¼ 1.91 and X ¼ 1.91
show the angular velocity vy in the local rotating frame. In
the early stage at Torbit ¼ Ω0t=2π ¼ 0.31 in Fig. 1(a), the
magnetic field lines are parallel to the z axis, and the
Keplerian motion or differential motion of vy can be seen as
the color contour at Y ¼ 1.91, where the reddish (bluish)
region corresponds to a positive (negative) toroidal veloc-
ity. As time passes, the vertical magnetic fields start to get
distorted due to the MRI, and they are stretched out in the
toroidal direction because of the Keplerian motion at
Torbit ¼ 6.89 in Fig. 1(b). This stretching motion can
amplify the magnetic field and form two inward- and
outward-flowing streams with a high plasma density and
strong electric current called the channel flow. The reddish
regions sandwiched by two surfaces in Fig. 1(c) show the
high-density channel flow with ρ ≥ hρi þ 2σρ where hρi
and σρ are the average density and standard deviation of
density distribution in the simulation domain, respectively.
The amplification of the magnetic field stretched by the

Keplerian motion may be balanced by the magnetic field

FIG. 1 (color online). Time evolution of the magnetorotational instability. Panels (a) and (b) show the magnetic field lines (greenish
lines) and angular velocities in the background at Y ¼ y=λ ¼ 1.91 and X ¼ x=λ ¼ 1.91 (color contour), and panels (c)–(e) depict the
high-density regions as reddish curved planes. Panels (b) and (c) are at the same time stage. Panel (f): The energy spectra during the MRI
at Torbit ¼ 0.31, 6.89, 7.18, 8.84, and 14.28. The dashed line is a Maxwellian fitting for Torbit ¼ 7.18.
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dissipation caused by magnetic reconnection. Figure 1(d) at
Torbit ¼ 7.18 is the stage just after the onset of magnetic
reconnection, and the break of the laminar channel flow
seen at Torbit ¼ 6.89 can be observed. After the first onset
of reconnection, subsequent reconnection occurs intermit-
tently in several different sites in the turbulent channel
flows, and the formation of the channel flow with a strong
magnetic field by MRI dynamo and destruction by recon-
nection occurs repeatedly.
Figure 1(f) shows the time evolution of the energy

spectra, where the horizontal and vertical axes are the
particle energy normalized by the rest mass energy and
number density NðεÞ. Before the first onset of magnetic
reconnection at Torbit ¼ 6.89, the plasmas are gradually
heated from the initial cold Maxwellian plasma. After the
onset of reconnection at Torbit ¼ 7.18, we can clearly
observe nonthermal particles above ε=mc2 > 0.2. The
dashed line, for reference, is a Maxwellian spectrum fitted
by T=mc2 ¼ 0.121. The nonthermal population continues
to grow, and the spectrum can be approximated by a single
power-law function with NðεÞ ∝ ε−3=2 at Torbit ¼ 8.84.
After Torbit ¼ 9 ∼ 10, the spectrum slope becomes harder
in the high-energy range from ε=mc2 ∼ 10 to 102. The
spectrum hardening might be due to the stochastic multiple
reconnection process [21], but note that the maximum
attainable energy in the system, whose gyroradius is almost
the same as the simulation box size, is ε=mc2 ∼ 102. Then
the spectrum deformation might be related to the accumu-
lation of high-energy particles around the maximum
attainable energy. As already discussed by the previous
2D PIC simulations [18,19], the pressure anisotropy with
p⊥ > p∥ is generated in our 3D simulation by the MRI
dynamo (see Fig. 3), which can contribute to rapid
reconnection [22] and particle acceleration [19].
Let us take a look at the history of kinetic and magnetic

field energies in the top panel of Fig. 2. The energies are
normalized by the initial magnetic field energy. As time
goes on, both the kinetic and magnetic field energies
increase, but the rapid increase of the magnetic field energy
can be observed at around Torbit ∼ 6, and the instantaneous
plasma β becomes of the order of unity. Our PIC simulation
in the local rotating system has been carried out using the
open shearing box boundary condition [20], and the
plasmas can acquire their energies by accretion toward
the center of gravity. Around Torbit ∼ 8, the total magnetic
field energy reaches to its maximum and then starts to
decrease until Torbit ∼ 9. After Torbit ∼ 9, both the magnetic
field and kinetic energies remain almost constant with
fluctuations.
This time evolution is basically similar to our previous

2D PIC simulation result [19]. In the early nonlinear stage,
we observe the formation of channel flows with the
amplification of the magnetic field and the subsequent
break of the channel flow by reconnection. The main
difference, however, is seen in the late nonlinear stage with

the turbulent or intermittent reconnection after Torbit ≥ 9. In
our previous 2D simulation, after the first onset of
reconnection, the channel flows are destroyed, and a couple
of large magnetic islands are formed in the system. In this
3D simulation, however, the channel flows are preserved
beyond the first onset of reconnection, and magnetic
reconnection occurs in several different locations with
the dynamic motion. The turbulent or intermittent recon-
nection in the late phase can be seen in 3D MHD
simulations as well [3–7].
The most intriguing result in our kinetic MRI simulation

is the enhancement of the angular momentum transport.
The bottom panel in Fig. 2 shows the time evolution of
parameter α, which is used in the standard accretion disk
model [23] and can be defined as α ¼ wxy=p, where p and
wxy are the volume-averaged, instantaneous plasma pres-
sure, and stress tensor, respectively. The stress tensor wxy,
which is related to the energy dissipation rate in the system,
can be calculated as follows:

wxy ¼ ρvxðvy þ qΩ0xÞ −
BxBy

4π
þ ðp∥ − p⊥Þ

B2
BxBy: ð2Þ

The terms on the right-hand side represent the Reynolds
(wR), Maxwell (wM), and anisotropy (wA) stresses, respec-
tively [15]. During the active reconnection phase between
7 < Torbit < 9, we found that α reached Oð1Þ with
wM > wR ∼ wA, and during the late stage of Torbit > 9, α ∼
Oð10−1Þ with wM ∼ wA > wR, which suggests a much
more efficient angular momentum transport than the
one discussed previously with α ∼Oð10−3–10−2Þ [6,20].
Note that α in some simulation results was normalized by

FIG. 2 (color online). (Top) Time evolution of the kinetic and
magnetic field energies. (Bottom) The α parameter (black) and
the contribution of Reynolds stress wR=p (green), Maxwell stress
wM=p (red), and anisotropy stress wA=p (blue).
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the initial pressure p0 instead of the instantaneous
pressure p.
Since the parameter α is approximated by

α ¼ wxy

p
∼
�
−
2BxBy

B2

��
B2=8π
p

�
∼
1

β
; ð3Þ

the enhancement of parameter α is related to a higher
saturation of the magnetic field, which can be determined
from the balance between the magnetic field amplification
due to the MRI dynamo and magnetic field dissipation by
reconnection. The dissipated magnetic field energy is
deposited as thermal energy. If the onset of reconnection
requires a high magnetic field in the collisionless system,
then the plasma β becomes small and a large α can be
realized.
To understand the dynamics of reconnection, we focus

on the pressure anisotropy. Figures 3(a) and 3(b) at Torbit ¼
14.28 show, respectively, two-dimensional (x; z) slices of
plasma density and pressure anisotropy p⊥=p∥ at the
position Y ¼ 0.96. The higher density regions around
Z ¼ 0.64 and 1.60 correspond to the so-called channel
flows where the magnetic field polarity changes. At the
center of the channel flow, one can see p⊥=p∥ ≤ 1, while
p⊥=p∥ > 1 for the other regions. Figure 3(c) shows the
relationship between the plasma density and p⊥=p∥, and
Fig. 3(d) is the histogram of occurrence frequency.
This behavior can be basically understood using the
double adiabatic equation of state with p⊥=ρB ¼ const
and p∥B2=ρ3 ¼ const [15,18,19]. The production of
p⊥=p∥ > 1 is simply due to the magnetic field amplifica-
tion of the MRI dynamo, and the formation of p∥=p⊥ > 1

is because of magnetic reconnection at the center of the
channel flow, where the total B is dissipated while the
plasma density is compressed. In the kinetic perspective, it
is known that the pressure anisotropy can be produced by
the Alfvénic beams along the plasma sheet boundary,
which are emanating from the magnetic diffusion
region [24].
The onset of magnetic reconnection is still a controver-

sial issue, but the linear growth rate of the collisionless
tearing mode under the pressure anisotropy would be
sufficient for our argument. This is given, for example,
by simplifying Eq. (40) in Ref. [22], as follows:

ImðωÞ
kvth

≃
�
p⊥
p∥

− 1

�
þ
�
rg
δ

�
3=2

�
1 − k2δ2

kδ

�
; ð4Þ

where k, δ, rg, and vth are the wave number, the thickness of
the current sheet, gyroradius, and thermal velocity, respec-
tively. At the saturation stage, vth ≤ c, B=B0 ∼ 230, and
δ=Δ ≥ 10. We then obtain the estimates of ðrg=δÞ3=2 ≤
0.089 and ð1 − k2δ2Þ=kδ ∼Oð1Þ. On the other hand, the
pressure anisotropy is 1 − p⊥=p∥ < 0.5 from Fig. 3(d).
Therefore, it is highly possible that the successive recon-
nection in the channel flow is suppressed by anisotropic
plasma of p⊥=p∥ < 1, which is formed by the preceding
reconnection. The kinetic magnetic reconnection involves a
deterrent effect to the successive magnetic dissipation, and
as a result, the high magnetic field is realized before the
onset of reconnection.
To confirm the enhancement of the α parameter by the

p∥ > p⊥ effect in the channel flow, we performed another
simulation including an isotropization model for an aniso-
tropic plasma after the formation of the channel flow,
Torbit > 6.89. In this model, we added a weak external

random magnetic field δ~B in Eq. (1) only for the channel
flow region, which is roughly characterized by the weak
magnetic field region of jB=B0j < 50. Namely, we used the
motion of equation given by

d~p
dt

¼ e

�
~Eþ ~v

c
× ð~Bþ δ~BÞ

�
þ ðother forcesÞ; ð5Þ

where we assumed the white noise δB with jδBj=jBj ¼ 2.5.
Shown in the top panel of Fig. 4 is the time history of the

volume-integrated pressure anisotropy p⊥=p∥. The dashed
and solid lines correspond to the cases with and without the
above isotropization model, respectively. As we expected,
one can find that the p⊥=p∥ with the isotropization model
in the channel flow is larger than that without the
isotropization, because the anisotropic plasma with
p∥ > p⊥ in the channel flow can be reduced by the
isotropization model.
Under this weak isotropization in the channel flow, let us

study the time history of the α parameter and the Reynolds
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FIG. 3 (color online). (a) A slice of the three-dimensional
density in the x-z plane at Y ¼ 0.96 and (b) a slice of the pressure
anisotropy p⊥=p∥ in the same plane. The color scales are shown
on the right. (c) The color contour of the occurrence frequency in
the (ρ; p⊥=p∥) plane, and (d) the histogram of the occurrence
frequency as a function of p⊥=p∥ in the logarithmic scale.
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wR=p, Maxwell wM=p, and anisotropy stress wA=p with
and without the isotropization model in the bottom panel.
The dashed and solid lines show the cases with and without
the isotropization model, respectively. One can find that the
α parameter can be reduced under the isotropization model.
The magnitude of the anisotropy stress wA=p does not
change between the two cases with and without the
isotropization model, while the change of the Maxwell
stress wM=p becomes large under the isotropization model.
This suggests that the isotropization in the channel flow
plays an important role in the magnetic field generation
during the MRI dynamo.
In summary, we have investigated for the first time a

three-dimensional collisionless MRI in a local rotating
system and have shown that an anisotropic pressure of
p∥=p⊥ > 1 is maintained in the channel flow during the
MRI, which leads to high-magnetic-field saturation and an
enhanced α parameter. During the quiescent stage of
reconnection, the isotropization of the anisotropic plasma
progresses in the channel flow. After the plasma isotrop-
ization, the anisotropic plasma with p⊥=p∥ > 1 outside the

channel flow region may contribute to a rapid reconnection
and nonthermal particle generation [19].
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(Bottom) The α parameter (black) and the contribution of
Reynolds stress wR=p (green), Maxwell stress wM=p (red),
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