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Considering the problem of sampling from the output photon-counting probability distribution of a
linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum
theory and the computational complexity theory point of view. We derive a general formula for calculating
the output probabilities, and by considering input thermal states, we show that the output probabilities are
proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating
permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents
can be approximated with an algorithm in the BPPNP complexity class, as there exists an efficient classical
algorithm for sampling from the output probability distribution. We further consider input squeezed-
vacuum states and discuss the complexity of sampling from the probability distribution at the output.
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Introduction.—Boson sampling is an intermediate model
of quantum computation that seeks to generate random
samples from a probability distribution of photon (or, in
general, boson) counting events at the output of anM-mode
linear-optical network consisting of passive optical ele-
ments, for an input with N of the modes containing single
photons and the rest in the vacuum states [1]. There is great
interest in this particular computational problem as this
task, despite its simple physical implementation, is strongly
believed to be a problem that cannot be efficiently
simulated classically. This has led to several proof of
principle experiments realizing small-scale boson sampling
[2–5] and investigations of its characterization [6,7] and
implementation [8].
In boson sampling, the photon-counting probabilities are

proportional to the modulus squared of permanents of
complex matrices, which, in the case of single-photon
detections, are submatrices of the unitary matrix describing
the linear-optical network [9]. It has been proved that
exactly computing the permanent of matrices is difficult
(#P hard in complexity theory) [10,11], and it is in a class
that contains the polynomial hierarchy of complexity
classes [12]. More recently, it was proved that approxi-
mating squared permanents of real matrices to within a
multiplicative error is also #P hard, and it is believed this is
the case for modulus-squared permanents of arbitrary
complex matrices [1]. Based on this key observation,
Aaronson and Arkhipov have shown that boson sampling
cannot be classically simulated unless the polynomial
hierarchy collapses to the third level, a situation believed
to be highly unlikely.
In this Letter, we consider the problem of sampling from

the photon-counting probability distribution at the output of
a linear-optical network for input Gaussian states, which is
referred to as Gaussian boson sampling. We derive a

general formula for the probabilities of detecting single
photons at the output of the network. Using this formula we
show that probabilities of single-photon counting for input
thermal states are proportional to permanents of positive-
semidefinite Hermitian matrices. However, any classical
states can be modeled as a statistical mixture of coherent
states, and as a result we show that sampling from the
output probability distribution can be performed efficiently
on a classical computer. Thus, by using Stockmeyer’s
approximate counting algorithm [1,13], one can approxi-
mate permanents of positive-semidefinite Hermitian matri-
ces in the complexity class BPPNP, which is less
computationally complex than #P hard. To the best of
our knowledge this result was not previously known.
In addition, we consider squeezed-vacuum states as

inputs to a linear-optical network. We find the probabilities
of detecting single photons at the output is proportional to
the modulus squared of a quantity ON, which is obtained
by summing up ðN − 1Þ!! complex terms, with N being the
number of the detected single photons. It was recently
shown that a specific case of this problem is equivalent to a
randomized version of the boson sampling problem that
cannot be efficiently simulated using a classical computer
[14]. This implies that, following the results from [1], at
least for this specific problem approximating jON j2, is #P
hard. However, it would be surprising if this problem were
the only case of the general problem of boson sampling
with squeezed-vacuum states, for which approximating
jON j2 is a #P-hard problem. Such considerations may help
a complexity theorist to identify other #P-hard problems.
Brief review of previous works.—If the photons behaved

as classical particles, i.e., there were no interferences (the
nonclassical effect) between them as they scattered by a
linear-optical network, the output probabilities would be
permanents of matrices with non-negative elements [1].
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In this classically simulatable situation, one can use
Stockmeyer’s approximate counting algorithm [13] to
approximate one particular output probability, even if it
is exponentially small, to within a multiplicative error in
BPPNP (in the third level of the polynomial hierarchy); for a
short description of this algorithm, see the supplementary
information of Ref. [14] or theorem 4.1 of Ref. [1]. This
algorithm was further improved and it was shown that
the approximation can be done in BPP (bounded-error
probabilistic polynomial time) that is contained in the
second level of the polynomial hierarchy [15]. The prob-
ability p is approximated with ~p to within a multiplicative
factor of g, if p=g ≤ ~p ≤ gp for g ≥ 1þ 1=hðNÞ, where
hðNÞ is a polynomial function in the size of the problem N
(the number of detected single photons). Throughout this
Letter we refer to this form of approximation only.
Aaronson and Arkhipov [1] have shown that if there is a

polynomial-time classical algorithm for boson sampling
with single-photon inputs, then one could use Stockmeyer’s
approximate counting algorithm to approximate the prob-
ability of detecting a particular configuration of output
photons in BPPNP. This would then approximate the
modulus squared of the permanent of a submatrix of a
unitary matrix. However, on the other hand, it was shown
that this approximation is #P hard [1], as the elements of a
unitary matrix are, in general, complex numbers, and an
algorithm for this problem can solve all of the problems in
the entire polynomial hierarchy [12]. Therefore, the poly-
nomial hierarchy of complexity classes would collapse to
the third level, if there exists a classical algorithm that can
efficiently simulate boson sampling, a highly implausible
situation [1]. It was also shown in Ref. [1] that, modulo two
conjectures, even sampling from a probability distribution
that is an approximation of the output probability distri-
bution is classically intractable as well. This form of
sampling is referred to as the approximate boson sampling,
as opposed to the exact boson sampling that is for sampling
from the exact output probability distribution. Here we
consider exact boson sampling only.
Photon-counting probability distribution.—In the

Gaussian boson sampling problem, we consider the photon-
counting probability distribution at the output of an
M-mode linear-optical network for an input multimode
Gaussian quantum state ρin, which is a product state of
the individual states fρsg in each mode; see Fig. 1. We are
then interested in the output probabilities of detecting N
single photons,

pðnÞ ¼ Tr½ρoutjnihnj�; ð1Þ
where n ¼ ðn1; n2; n3;…; nMÞ, ns ∈ f0; 1g, P

sns ¼ N,
and ρout ¼ UρinU† with U being the unitary operator that
describes the linear-optical network. In practice, one must
use photon-number-resolving detectors in order to distin-
guish the single-photon events from events in which a
detector registers more than one photon. Hence, in

Gaussian boson sampling, inefficiency of detectors will
cause errors in distinguishing the events. Note, however, that
the errors can beminimized if themean-photon number at the
input is much less than the number of modes. Also,
for the exact boson sampling case, the detection probabilities
are allowed to be exponentially small.
A linear-optical network can also be uniquely repre-

sented by an M ×M unitary matrix U that relates the
creation operators of the output modes b̂†k to those of the
input modes â†j ,

b̂†j ¼ Uâ†jU
† ¼

XM
k¼1

Ujkâ
†
k: ð2Þ

For a multimode input coherent state jαi, where
α ¼ ðα1; α2; α3;…; αMÞ, the output state is also a multi-
mode coherent state. By using the relation (2), we have

Ujαi ¼
YM
j¼1

DðUâ†jU†; αjÞj0i ¼
YM
k¼1

Dðâ†k; βkÞj0i ¼ jβi;

where Dðâ†j ; αjÞ ¼ expðαjâ†j − ᾱjâjÞ is the displacement
operator for mode âj, with ᾱj being the complex conjugate
of αj, and the output amplitudes are

βk ¼
XM
j

αjUjk: ð3Þ

Using this equation the probability distribution (1) is then
given by

pðnÞ ¼ e−I
YM
k¼1

jβkj2nk ; ð4Þ

where I ¼ P
M
k jβkj2 ¼

P
M
j jαjj2. This probability distri-

bution can be efficiently calculated using a classical
computer. This implies that there exists an efficient
classical algorithm for boson sampling with coherent states.

FIG. 1. In the Gaussian boson sampling problem for a given
product Gaussian input state, ρin ¼⊗M

s¼1 ρs, and a unitary matrix
describing the network, one samples from the output probability
distribution pðnÞ.
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Note, however, that coherent states are useful for efficiently
characterizing linear-optical networks that are indispen-
sable for the classical verification of boson sampling in
practice [16].
In deriving a general formula for calculating the prob-

ability distribution (1), without loss of generality, we make
two assumptions about input Gaussian states for Gaussian
boson sampling. First, we assume that the input states have
zero first order moments. This is because any displacement
operations before the linear-optical network are equivalent
to some displacement operations at the output, which will
not change the correlations between output states [17].
Second, we assume the covariance matrices of the Gaussian
states ρs are diagonal with the variance in the x quadrature
Vxs being larger than or equal to the variance in the p
quadrature Vps

. The reason is that, in general, any local
phase-shift operation before the linear-optical network can
be absorbed into the unitary operation describing the
network. We use the Q function to represent each input
Gaussian state ρs,

QsðαsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2s − 4λ2s

p
π

exp ½λsðα2s þ ᾱ2sÞ − μsjαsj2�; ð5Þ

where

λs ¼
1

2Vps
þ 2

−
1

2Vxs þ 2
; μs ¼

1

Vxs þ 1
þ 1

Vps
þ 1

;

and for the vacuum state Vx ¼ Vp ¼ 1. The parameter λs is
between zero (when Vps

¼ Vxs) and infinity (for infinite
squeezing), and μs is between zero (for infinite variances)
and one (for pure states). TheQ function of the output state
using Eq. (3) can be calculated as

QoutðαÞ ¼
1

πM
hαjUρinU†jαi ¼ 1

πM
hηjρinjηi

¼
YM
s¼1

Qs

�XM
j¼1

αjŪjs

�
; ð6Þ

where jηi ¼ U†jαi ¼ jαŪi is an M-mode coherent state.
By using the expression for the input Q function (5), the
output Q function can be written in this compact form:

QoutðαÞ ¼
K
πM

exp

�
~α

�
−D C
C̄ 0

�
~α†
�
; ð7Þ

with ~α ≔ ðα1;…; αM; ᾱ1;…; ᾱMÞ, K ¼ Q
M
s¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2s − 4λ2s

p
,

C ¼ UλUT , D ¼ UμU†, where λ ¼ diagðλ1;…; λMÞ and
μ ¼ diagðμ1;…; μMÞ. Now, by using this Q function, the
probability distribution (1) is then given by

pðnÞ ¼ ðπÞM
Z
CM

d2MαQoutðαÞPnnðαÞ; ð8Þ

where

PnnðαÞ ¼
YM
s¼1

ejαsj2∂ns
αs∂ns

ᾱs
δ2ðαsÞ ð9Þ

is the P function of the number state jnihnj, ns ∈ f0; 1g,
with ∂n

α ≔ ∂n=∂αn and δ2ðαÞ≡ δðReðαÞÞδðImðαÞÞ [18].
Integration by parts yields

pðnÞ ¼ K
YM
s¼1

∂ns
αs∂ns

ᾱs
eFðα;ᾱÞjαs¼0; ð10Þ

where

Fðα; ᾱÞ ¼ ~α

�
~D C
C̄ 0

�
~α†; ð11Þ

with ~D ¼ 1 −D, 1 being theM ×M identity matrix. In the
above expression, we have to take 2N derivatives with
respect to independent variables fαs; ᾱsjns ≠ 0g at α ¼ 0;
hence, that expression can be written as

pðnÞ ¼ K
X∞
r¼1

Lð2N;F; rÞ; ð12Þ

where Lð2N;F; rÞ, analogous to distributing distinguish-
able balls into indistinguishable boxes, can be understood
as a sum over all possible ways to distribute 2N derivatives
(balls) among r functions (boxes), ∂i1F;…; ∂irF, such thatP

r
s¼1 is ¼ 2N and is ≠ 0. As Fðα; ᾱÞ is a second order

polynomial in α and ᾱ, and ∂isFjα¼0 ¼ 0 for is ≠ 2, only
Lð2N;F;NÞ for is ¼ 2 is nonzero. Therefore, we obtain the
desired formula for calculating the probabilities of N
single-photon detections as

pðnÞ ¼ K
Xð2N−1Þ!!

i

YN
l¼1

∂2F
∂Xi

2l−1∂Xi
2l
; ð13Þ

where the sum is over ð2N − 1Þ!! possible ways of
distributing 2N balls (∂=∂Xi

l, where fXi
lg2Nl¼1 ¼ fαs;

ᾱsjns ≠ 0g) into N boxes (F’s) such that each box contains
two balls. In the following, by using this new formula, we
consider two cases of thermal states and squeezed-vacuum
states as inputs.
Boson sampling with thermal states.—If one subjects M

thermal states with the same temperatures, i.e., μs ¼
2=ðVs þ 1Þ ¼ μ and λs ¼ 0 for all s, to a linear-optical
network, we have D ¼ μ1 and C ¼ 0 in the output Q
function (7). In this case the output Q function is identical
to the input Q function and no correlation is created. Here
we assume the input thermal states have different temper-
atures such that the matrix D is not diagonal, in general.
In this case, the formula (13) becomes
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pðnÞ ¼
�YM

s¼1

μs

�XN!

i

YN
l¼1

∂2

∂Xi
2l−1∂Xi

2l
½α ~DᾱT �; ð14Þ

where fXi
2l−1g2Nl¼1¼fαsjns¼1g and fXi

2lg2Nl¼1¼fᾱsjns¼1g.
By comparing this equation with the definition of a
permanent [1], it can be seen by inspection that

pðnÞ ¼
�YM

s¼1

μs

�
Perð½ ~D�N×NÞ: ð15Þ

Thus, the probabilities of having N simultaneous single-
photon detections at the output are proportional to perma-
nents of N × N submatrices of the Hermitian matrix ~D,
denoted by ½ ~D�N×N. The submatrices are obtained by
removing M − N rows and the same M − N columns
corresponding to those output modes from which no
photon was detected. Notice that we have ~D ¼ U ~μU†,
where the elements of matrix ~μ are ð1 − μjÞδij ≥ 0; hence,
~D and its principal submatrices ½ ~D�N×N are positive-
semidefinite Hermitian matrices.
We now see whether boson sampling with thermal states

can be efficiently simulated classically. Each input thermal
state can be expressed as a Gaussian statistical mixture of
coherent states due to the Glauber-Sudarshan representa-
tion [19,20]

ρthj ¼
Z
C
d2αjPth

j ðαjÞjαjihαjj; ð16Þ

where Pth
j ðαjÞ is a Gaussian P function for the thermal state

to input mode j. By choosing a random set of input
coherent states with amplitudes fαjgMj¼1 from the proba-
bility distributions fPth

j ðαjÞgMj¼1, one can efficiently find
the amplitudes of output coherent states fβkgMk¼1 and the
probability distribution from Eq. (4). This implies that there
exists an efficient classical algorithm for boson sampling
with thermal states. Hence, using Stockmeyer’s approxi-
mate counting algorithm [13], the probability (15) for a
specific n can be approximated in BPPNP. As any arbitrary
positive-semidefinite Hermitian matrix ~D0 can be written
as ~D0 ¼ Uq~μU† with q ≥ 1, we then have Perð½ ~D0�N×NÞ ¼
qNPerð½ ~D�N×NÞ, which is proportional to the output prob-
ability (15). Therefore, using Stockmeyer’s algorithm, the
permanent of any arbitrary positive-semidefinite Hermitian
matrix, despite having complex number elements, can be
approximated in BPPNP, which is in the third level of the
polynomial hierarchy. Unless the polynomial hierarchy
collapses to this level, this problem is not #P hard.
Based on the above argument, boson sampling with any

classical input states, i.e., quantum states with non-negative
P functions, can be efficiently simulated with a classical
computer as well. Notice that the output probabilities can

also be calculated by using the output probabilities for input
coherent state (4) and the P functions of the input states:

pðnÞ ¼
Z
CM

d2Mα
YM
k¼1

PkðαkÞe−jαkj2
����
XM
j

αjUjk

����
2nk

: ð17Þ

Therefore, according to the above argument, for all of the P
functions that are valid probability density functions, the
above integral can be approximated in BPPNP.
Boson sampling with squeezed-vacuum states.—Let us

now consider squeezed-vacuum states whose variances in
the x and p quadratures are Vxs ¼ e2rs and Vps

¼ e−2rs ,
respectively, where rs is the squeezing parameter for input
mode s. In this case, we have μs ¼ 1 for all s, ~D ¼ 0,
λs ¼ ðtanh rsÞ=2 and K ¼ Q

M
s¼1ðcosh rsÞ−1.

As the function (11) becomes Fðα; ᾱÞ ¼ F1ðαÞ þ
F1ðᾱÞ, F1ðαÞ ¼ αCαT , we have ∂αj∂ ᾱjFjα¼0 ¼ 0, for
any i and j. Thus, by using the formula (13), the probability
distribution for detecting N single photons at the output is
given by

pðnÞ ¼
�YM

s¼1

1

cosh rs

�����
XðN−1Þ!!

i

YN=2

l¼1

∂2F1ðαÞ
∂Xi

2l−1∂Xi
2l

����
2

; ð18Þ

where fXi
lgNl¼1 ¼ fαsjns ¼ 1g. One can immediately see

from this distribution that, independent of what the linear-
optical network is, the probability of detecting an odd
number of single photons at the output is always zero, as
expected from squeezed-vacuum inputs. The probabilities
(18) are proportional to the modulus squared of this
quantity:

ON ¼
XðN−1Þ!!

i

YN=2

l¼1

∂2F1ðαÞ
∂Xi

2l−1∂Xi
2l
; ð19Þ

which depends on the off-diagonal elements of the matrix
C and the number of detected single photons. Notice that
quantityON is not a permanent, but it is a sum of ðN − 1Þ!!
complex numbers. Considering that the matrix C is
symmetric, cij ¼ cji, we have ∂αi∂αjF1ðαÞ ¼ 2cij, with
i ≠ j. Hence, the above quantity can be written as

ON ¼
X
i1≠i2

�
ci1i2

X
i3≠i4

�
ci3i4 � � �

X
i2k−1≠i2k

ðci2k−1i2k…ciN−1iN Þ � � �
�	

× 2N=2; ð20Þ

where i1 ¼ 1, il ≠ i1;…; il−1 for 2 ≤ l ≤ N.
For a particular case of boson sampling with squeezed-

vacuum states, it has been shown that sampling cannot be
simulated classically [14]. Consider an M-mode linear-
optical network, which consists ofM=2 beam splitters with
a π=2-phase shifter at one of the input ports and an M=2-
mode linear-optical network that acts only on half of the
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output modes of the beam splitters. By feeding this
M-mode network with M squeezed-vacuum states, the
beam splitters generate M=2 two-mode entangled
(two-mode squeezed-vacuum) states. Then, conditional
on detecting N=2 single photons from one particular
configuration of the output modes of beam splitters,
N=2 single photons in the corresponding other modes
are subjected to the M=2-mode network, and the problem
reduces to that of the original boson sampling. This implies
that sampling from the single-photon-counting probability
distribution at the output of theM-mode network cannot be
simulated classically and thus, following the Aaronson and
Arkhipov results [1], for at least this type of configuration,
approximating jON j2 is a #P-hard problem. It would be
surprising if this were the only configuration for which
approximating jON j2 was #P hard, as the squeezed-vacuum
states are highly nonclassical with a highly singular P
function and the output is almost always an entangled state
[17]. This result may be of interest to computational
complexity theory as a way of identifying other classically
hard problems besides the computing of permanents.
Conclusion.—We have presented new results that are

interesting from quantum computation, computational
complexity theory, and optics perspectives, by considering
the problem of sampling from the output probability
distribution of a linear-optical network for input
Gaussian states. Our results show that the consideration
of problems in quantum optics can help to classify and
identify new problems in computational complexity theory.
There are two interesting open questions. The first question
is whether permanents of positive-semidefinite Hermitian
matrices can be approximated with an algorithm similar to
the algorithm for matrices with non-negative entries [15] in
BPP. Note that the probabilities (15) for input thermal states
and (18) for squeezed-vacuum states are special cases of the
formula (13) for general squeezed thermal input states. By
adding sufficient thermal noise to input squeezed-vacuum
states, they will become classical with positive P function
and, as shown, sampling can be simulated classically.
Hence, the second question is, as we add thermal noise
to pure squeezed-vacuum input states, at what point does
sampling become classically simulatable; does entangle-
ment play any role?
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