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Steering is the entanglement-based quantum effect that embodies the “spooky action at a distance”
disliked by Einstein and scrutinized by Einstein, Podolsky, and Rosen. Here we provide a necessary and
sufficient characterization of steering, based on a quantum information processing task: the discrimination
of branches in a quantum evolution, which we dub subchannel discrimination. We prove that, for any
bipartite steerable state, there are instances of the quantum subchannel discrimination problem for which
this state allows a correct discrimination with strictly higher probability than in the absence of
entanglement, even when measurements are restricted to local measurements aided by one-way
communication. On the other hand, unsteerable states are useless in such conditions, even when entangled.
We also prove that the above steering advantage can be exactly quantified in terms of the steering
robustness, which is a natural measure of the steerability exhibited by the state.
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Entanglement is a property of distributed quantum
systems that does not have a classical counterpart and
challenges our everyday-life intuition about the physical
world [1]. It is also the key element in many quantum
information processing tasks [2]. The strongest feature
exhibited by entangled systems is nonlocality [3]. Aweaker
feature related to entanglement is steering: roughly speak-
ing, in quantum steering one party can induce very different
ensembles for the local state of the other party, beyond what
is possible based only on a conceivable classical knowledge
about the other party’s “hidden state” [4,5]. Steering
embodies the “spooky action at a distance”—in the words
of Einstein [6]—identified by Schrödinger [7], scrutinized
by Einstein, Podolsky, and Rosen [8], and formally put on
sound ground in Refs. [4,5]. Not all entangled states are
steerable, and not all steerable states exhibit nonlocality
[4,5], but states that exhibit steering allow for the verifi-
cation of their entanglement in a semi-device-independent
way: there is no need to trust the devices used by the
steering party [4,5,9]. Besides its foundational interest,
steering is interesting in practice in bipartite tasks, like
quantum key distribution (QKD) [10], where it is conven-
ient or appropriate to trust the devices of one of two parties,
but not necessarily of the other one. For example, by
exploiting steering, key rates unachievable in a fully
device-independent approach [11] are possible, still assum-
ing less about the devices than in a standard QKD approach
[12]. For these reasons, steering has recently attracted
significant interest, both theoretically and experimentally

[13–30], mostly directed to the verification of steering.
Nonetheless, an answer to the question “What is steering
useful for?” can arguably be considered limited [9,12].
Furthermore, the quantification of steering has just started
to be addresses [24,31].
In this Letter, we fully characterize and quantify steering

in an operational way that mirrors the asymmetric features
of steering, and that breaks new ground in the investigation
of the usefulness of steering. We prove that every steerable
state is a resource in a quantum information task that we
dub subchannel discrimination, in a practically relevant
scenario where measurements can only be performed
locally. Subchannel discrimination is the identification of
which branch of a quantum evolution a quantum system
undergoes (see Fig. 1). It is well known that entanglement
between a probe and an ancilla can help in discriminating
different channels [32–45]. In Ref. [46] it was proven that
every entangled state is useful in some instance of the
subchannel discrimination problem. Reference [47] ana-
lyzed the question of whether such an advantage is
preserved when joint measurements on the output probe
and the ancilla are not possible. Here we prove that, when
only local measurements coordinated by forward classical
communication are possible, every steerable state remains
useful, while nonsteerable entangled states become useless.
We further prove that this usefulness, optimized over all
instances of the subchannel discrimination problem, is
exactly equal to the robustness of steering, a natural
way of quantifying steering using techniques similar to
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the ones used in Ref. [24], but based on the notion of
robustness [48–51].
Preliminaries: entanglement and steering.—We will

denote using a ^ (hat) mathematical entities that are
“normalized.” So, for example, a positive semidefinite
operator with unit trace is a (normalized) state ρ̂. An
ensemble E ¼ fρaga for a state ρ̂ is a collection of substates
ρa ≤ ρ̂ such that

P
aρa ¼ ρ̂. Each substate ρa is propor-

tional to a normalized state ρ̂a, ρa ¼ paρ̂a, with pa ¼
TrðρaÞ the probability of ρ̂a in the ensemble. An assem-
blage A ¼ fExgx ¼ fρajxga;x is a collection of ensembles
Ex for the same state ρ̂, one for each x, i.e.,

P
aρajx ¼ ρ̂,

for all x. For example, E ¼ f1
2
j0ih0j; 1

2
j1ih1jg and E0 ¼

f1
2
jþihþj; 1

2
j−ih−jg, with j�i ≔ ðj0i � j1iÞ= ffiffiffi

2
p

, are both
ensembles for the maximally mixed state 1=2 of a qubit,
and taken together they form an assemblage A ¼ fE; E0g
for 1=2. Along similar lines, a measurement assemblage
MA ¼ fMajxga;x is a collection of positive operators
Majx ≥ 0 satisfying

P
aMajx ¼ 1 for each x, which thus

represents one positive-operator-valued measure (or
POVM), describing a quantum measurement, for each x.
For a fixed bipartite state ρ̂AB, every measurement assem-
blage on Alice leads to an assemblage on Bob via

ρBajx ¼ TrAðMA
ajxρ̂ABÞ: ð1Þ

On the other hand, every assemblage on Bob fσajxga;x
has a quantum realization (1) for some ρ̂AB satisfying
ρ̂B ¼ TrAðρ̂ABÞ ¼

P
xσajx ≕ σ̂B and for some measure-

ment assemblage [52].

An assemblage A ¼ fρajxga;x is unsteerable if

ρUSajx ¼
X
λ

pðλÞpðajx; λÞσ̂ðλÞ ¼
X
λ

pðajx; λÞσðλÞ; ð2Þ

for all a; x, for some probability distribution pðλÞ, condi-
tional probability distributions pðajx; λÞ, and states σ̂ðλÞ.
Here λ indicates a (hidden) classical random variable, and
we also introduced subnormalized states σðλÞ ¼ pðλÞσ̂ðλÞ.
We observe that every conditional probability distri-
bution pðajx; λÞ can be written as a convex combination
of deterministic conditional probability distributions:
pðajx; λÞ ¼ P

νpðνjλÞDðajx; νÞ, where Dðajx; νÞ ¼
δa;fνðxÞ is a deterministic response function labeled by ν.
This means that, by a suitable relabeling,

ρUSajx ¼
X
λ

Dðajx; λÞσðλÞ ∀a; x; ð3Þ

where the summation is over labels of deterministic
response functions. We say that an assemblage fρajxga;x
is steerable if it is not unsteerable.
A separable (or unentangled) state decomposes as

σ̂sepAB ¼ P
λpðλÞσ̂AðλÞ ⊗ σ̂BðλÞ, for σ̂AðλÞ, σ̂BðλÞ local

states, λ a classical label, and pðλÞ a probability distribu-
tion [53]. A state is entangled if it is not separable.
An unsteerable assemblage can always be obtained
via Eq. (1) from the separable state ρAB ¼P

λpðλÞjλihλjA ⊗ σ̂ðλÞB, with Majx ¼
P

μpðajx; μÞjμihμj,
and hμjλi ¼ δμλ. Most importantly, any separable state can
only lead to unsteerable assemblages, as, for a separable
state, one has TrAðMajxσ

sep
ABÞ ¼

P
λpðλÞpðajx; λÞσBðλÞ,

with pðajx; λÞ ¼ TrAðMajxσAðλÞÞ. It follows that entangle-
ment is a necessary condition for steerability and, in turn, a
steerable assemblage is a clear signature of entanglement.
Interestingly, not all entangled states lead to steerable
assemblages by the action of appropriate local measure-
ment assemblages [4,5]; we call steerable states those that
do, and unsteerable states those that do not. There exist
entangled states that are steerable by one party but not the
other (see, e.g., Ref. [22]). In this Letter, when we refer
to a state being steerable or unsteerable, it is always to be
assumed that Alice is the steering party.
Channel and subchannel identification.—A subchannel

Λ is a linear completely positive map that is trace
nonincreasing: TrðΛ½ρ�Þ ≤ TrðρÞ, for all states ρ. If a
subchannel Λ is trace preserving, TrðΛ½ρ�Þ ¼ TrðρÞ, for
all ρ, we use the ^ notation and say that Λ̂ is a channel.
An instrument I ¼ fΛaga for a channel Λ̂ is a collection of
subchannels Λa such that Λ̂ ¼ P

aΛa (see Fig. 1). Every
instrument has a physical realization, where the index a can
be considered available to some party [2,54,55].
Fix an instrument fΛaga for a channel Λ̂, and consider a

measurement fQbgb on the output space of Λ̂. The joint

FIG. 1. A decomposition of a channel into subchannels can
be seen as a decomposition of a quantum evolution into branches
of the evolution. If fΛaga is an instrument for Λ̂, then we can
imagine that the evolution ρ ↦ Λ̂½ρ� has branches ρ ↦ Λa½ρ�,
where each branch takes place with probability TrðΛa½ρ�Þ. The
transformation described by the total channel Λ̂ can be seen as
the situation where the “which-branch” information is lost.
An example of a subchannel discrimination problem is that
of distinguishing between the two quantum evolutions
Λi½ρ� ¼ KiρK

†
i , i ¼ 0; 1, with K0 ¼ j0ih0j þ ffiffiffiffiffiffiffiffiffiffi

1 − γ
p j1ih1j and

K1 ¼ ffiffiffi
γ

p j0ih1j, corresponding to the so-called amplitude damp-

ing channel Λ̂ ¼ Λ0 þ Λ1 [2].
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probability of Λa and Qb for input ρ is pða; bÞ ≔
TrðQbΛa½ρ�Þ ¼ pðbjaÞpðaÞ, where pðaÞ ¼ TrðΛa½ρ�Þ is
the probability of the subchannel Λa for the given input
ρ and pðbjaÞ ¼ pða; bÞ=pðaÞ is the conditional probability
of the outcome b given that the subchannel Λa took place.
The probability of correctly identifying which subchannel
was realized is

pcorrðfΛaga; fQbgb; ρÞ ¼
X
a

TrðQaΛa½ρ�Þ: ð4Þ

The archetypal case of subchannel discrimination is that
of channel discrimination, where Λa ¼ paΛ̂a, with chan-
nels Λ̂a and probabilities pa. The problem often considered
is that of telling apart just two channels Λ̂0 and Λ̂1, each
given with probability p0 ¼ p1 ¼ 1=2. In this case the
total (average) channel is simply Λ̂ ¼ 1

2
Λ̂0 þ 1

2
Λ̂1. The

best success probability in identifying subchannels
fΛaga with an input ρ is defined as pcorrðfΛaga; ρÞ ≔
maxfQbgbpcorrðfΛaga; fQbgb; ρÞ. Optimizing also over
the input state, one arrives at pNE

corrðfΛagaÞ ≔
maxρpcorrðfΛaga; ρÞ, where the superscript NE stands
for “no entanglement” [see Fig. 2(a)].

Indeed, one may try to improve the success probability
by using an entangled input state ρAB of an input probe B
and an ancilla A. The guess about which subchannel took
place is based on a joint measurement of the output
probe and the ancilla [see Fig. 2(b)], with success
probability pcorrðfΛB

aga; fQAB
b gb; ρABÞ. In the latter

expression, we have explicitly indicated that the subchan-
nels act nontrivially only on B, while input state and
measurement pertain to AB. One can define the optimal
probability of success for a scheme that uses input
entanglement and global measurements: pE

corrðfΛagaÞ ≔
maxρAB maxfQAB

b gb pcorrðfΛB
aga; fQAB

b gb; ρABÞ. We say that
entanglement is useful in discriminating subchannels
fΛaga if pE

corrðfΛagaÞ > pNE
corrðfΛagaÞ. It is known that

there are instances of subchannel discrimination, already in
the simple setting fΛaga ¼ f1

2
Λ̂0;

1
2
Λ̂1g, where pE

corr ≈ 1 ≫
pNE
corr ≈ 0 (see Ref. [47] and references therein).
In Ref. [46] it was proven that, for any entangled state

ρAB, there exists a choice f1
2
Λ̂0; 12 Λ̂1g such that

pcorr

��
1

2
Λ̂0;

1

2
Λ̂1

�
; ρAB

�
> pNE

corr

��
1

2
Λ̂0;

1

2
Λ̂1

��
;

i.e., that every entangled state is useful for the task of (sub)
channel discrimination. In this sense, every entangled state,
independently of how weakly entangled it is, is a resource.
Nonetheless, exploiting such a resource may require
arbitrary joint measurements on the output probe and
ancilla [47]. From a conceptual perspective, one may want
to limit measurements to those performed by local oper-
ations and classical communication (LOCC), as this makes
the input entangled state the only nonlocal resource. This
limitation can be justified also from a practical perspective:
LOCCmeasurements are arguably easier to implement, and
might be the only feasible kind of measurements, especially
in a scenario where only weakly entangled states can be
produced. We do not know whether every entangled state
stays useful for subchannel discrimination when measure-
ments are restricted to be LOCC, but we will see that, if the
measurements are limited to local operations and forward
communication (one-way LOCC), then only steerable
states remain useful.
Steerability and subchannel identification by means of

restricted measurements.—A Bob-to-Alice one-way
LOCC measurement MB→A ¼ fQB→A

a ga has the structure
QB→A

a ¼ P
xM

A
ajx ⊗ NB

x , where fNB
x gx is a measurement

on B and fMA
ajxga;x is a measurement assemblage on A.

The optimal probability of success in the discrimination
of the instrument IB ¼ fΛB

aga by means of the input
state ρAB and one-way LOCC measurements from
B to A [see Fig. 2(c)] is given by pB→A

corr ðI ; ρABÞ ≔
maxMB→ApcorrðIB;MB→A; ρABÞ. We say that ρAB is useful
in this restricted-measurement scenario if pB→A

corr ðI ; ρABÞ >
pNE
corrðIÞ for some instrument I [56]. Using (1), we find that

(a)

(b)

(c)

FIG. 2 (color online). Different strategies for subchannel
discrimination. (a) No entanglement is used: a probe, initially
in the state ρ, undergoes the quantum evolution Λ̂, with branches
Λa, and is later measured, with an outcome b for the measurement
described by the POVM fQbgb, which is the guess for which
branch of the evolution actually took place. (b) The probe B is
potentially entangled with an ancilla A; the output probe and the
ancilla are jointly measured. (c) The probe is still potentially
entangled with an ancilla, but the final measurement fQbgb is
restricted to local measurements on the output probe and the
ancilla, coordinated by one-way classical communication (single
lines represent quantum systems, double lines classical informa-
tion): the outcome x of the measurement fNxgx performed on the
output probe is used to decide which measurement fMbjxgb to
perform on the ancilla.
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pcorrðIB;MB→A; ρABÞ ¼
X
a;x

TrBðΛ†B
a ½NB

x �ρajxÞ; ð5Þ

where Λ†
a denotes the dual map to Λa, which may be

defined via TrðXΛa½Y�Þ ¼ TrðΛ†
a½X�YÞ, ∀X; Y. If the

assemblage A ¼ fρajxga;x appearing in Eq. (5) is unsteer-
able, then we can achieve an equal or better performance
using an uncorrelated probe in the best input state σ̂ðλÞ
among the ones appearing in Eq. (2). Thus, if ρAB is
unsteerable, then it is useless for subchannel discrimination
with one-way measurements. This applies also to entangled
states that are unsteerable, which are nonetheless useful in
channel discrimination with arbitrary measurements [46].
We will now prove that every steerable state is useful in

subchannel discrimination with one-way LOCC measure-
ments. To state our result in full detail we need to introduce
the steering robustness of ρAB,

RA→B
steer ðρABÞ ≔ sup

MA
RðAÞ; ð6Þ

where the supremum is over all measurement assemblages
MA ¼ fMajxga;x on A, RðAÞ is the steering robustness of
the assemblage A, defined as the minimum value of t ≥ 0
for which there exists an assemblage fτajxg for which
fðρajx þ tτajxÞ=ð1þ tÞga;x is unsteerable, andA is obtained
from ρAB with the measurement assemblageMA on A [see
Eq. (1)]. The steering robustness of A, which is nonzero
if and only if A is steerable, is a measure of the minimal
“noise” needed to destroy the steerability of the assemblage
A, with noise intended as the mixing with an arbitrary
assemblage fτajxga;x. We prove the following.
Theorem 1. Every steerable state is useful in one-way

subchannel discrimination. More precisely, it holds

sup
I

pB→A
corr ðI ; ρABÞ
pNE
corrðIÞ

¼ RA→B
steer ðρABÞ þ 1; ð7Þ

where the supremum is over all instruments I .
Proof.—Details of the proof appear in the Supplemental

Material [57]; a summary is as follows. Using the defi-
nitions above, one checks that

pcorrðIB;MB→A; ρABÞ ≤ ½1þ RA→B
steer ðρABÞ�pNE

corrðIÞ;

for anyMB→A and any I. It remains to prove that the bound
can be approximated arbitrarily well by constructing
appropriate instances of the subchannel discrimination
problem. To do this, we will need that the steering
robustness RðAÞ of any assemblage A ¼ fρajxga;x can
be calculated via semidefinite programming (SDP) [62].
In particular, RðAÞ þ 1 is equal to the optimal value of the
SDP optimization problem

maximize
X
a;x

TrðFajxρajxÞ ð8aÞ

subject to
X
a;x

Dðajx; λÞFajx ≤ 1 ∀λ ð8bÞ

Fajx ≥ 0 ∀a; x; ð8cÞ

where each λ labels a deterministic response function.
Now, let MA ¼ fMajxga;x be a measurement assem-

blage on A, and A the resulting assemblage on B. Let Fajx
be optimal, so that

P
a;xTrðFajxρajxÞ ¼ 1þ RðAÞ. Define

linear maps Λa via their duals, as

Λ†
a ¼ Λ†

a ∘ΠX ∀a; ð9Þ

Λ†
a½jxihxj� ¼ αFajx ∀a; x: ð10Þ

Here ∘ is composition, and ΠX indicates the projector onto
an orthonormal basis fjxig, x ¼ 1;…; jXj, where jXj is the
number of settings in the measurement assemblage MA.
The constant α > 0 will be chosen soon. By the conditions
(8c), (9), and (10), each Λ†

a is completely positive, and
therefore so is each Λa; these maps act as Λa½ρ� ¼
α
P

xTrðFajxρÞjxihxj, and are subchannels as long asP
aΛ

†
a½1� ¼

P
a;xΛ

†
a½jxihxj� ¼ α

P
a;xFajx ≤ 1, a condition

that can be satisfied for α ¼ ∥
P

a;xFajx∥−1∞ , with ∥ · ∥∞ the
operator norm.
Finally, we introduce N additional subchannels Λa½ρ� ¼

1
N Trðð1 −

P
aΛ

†
a½1�ÞρÞσ̂a, for a¼ jAjþ1;…;jAjþN, where

jAj indicates the original number of outcomes for POVMs
in MA, and σ̂a are arbitrary states in a two-dimensional
space orthogonal to spanfjxijx ¼ 1;…; jXjg. In totality,
the subchannels fΛag define an instrument I for the trace-

preserving channel Λ̂ ¼ PjAjþN
a¼1 Λa, and one can incorpo-

rate the measurement assemblage MA into a one-way
LOCC strategy MB→A such that α½1þ RðAÞ� ≤
pcorrðIB;MB→A; ρABÞ ≤ α½1þ RðAÞ� þ ð2=NÞ. On the
other hand, condition (8b) implies α≤pNE

corrðIÞ≤α þ
ð2=NÞ, so pcorrðIB;MB→A;ρABÞ=pNE

corrðIÞ≥ð½1þRðAÞ�=
½1þ2=ðαNÞ�Þ. The claim follows by taking N to be
arbitrarily large. □

Conclusions.—We have proven that the steerable states
are precisely the states useful for the task of subchannel
discrimination with feed-forward local measurements. This
answers a question left open by Ref. [47] about the charac-
terization of a large class of entangled states that remain
useful for (sub)channel discrimination with local measure-
ments. Most importantly, it provides a full operational
characterization—and proof of usefulness—of steering in
terms of a fundamental task, subchannel discrimination, in a
setting—that of restrictedmeasurements—very relevant from
the practical point of view. The construction in the proof of
Theorem 1 proves that, for any measurement assemblage

PRL 114, 060404 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 FEBRUARY 2015

060404-4



MA on A such that the corresponding A exhibit steering
with robustness RðAÞ > 0, there exist instances of the
subchannel discrimination problem with restricted measure-
ments where the use of the steerable state ensures a
probability of success approximately ½1þ RðAÞ�-fold higher
than in the case where no entanglement is used. Thus, the
robustnesses RðAÞ and RA→B

steer ðρABÞ have operational mean-
ings not only in terms of the resilience of steerability versus
noise, but also in applicable terms. Also, they constitute
semi-device-independent lower bounds

RðAÞ ≤ RA→B
steer ðρABÞ ≤ RgðρABÞ ð11Þ

on the generalized robustness of entanglement RgðρABÞ,
which is the minimum t ≥ 0 for which there exists some
state τ so that ðρAB þ tτABÞ=ð1þ tÞ is separable. That
Eq. (11) holds is immediate, given that a separable state
only leads to unsteerable assemblages. Notice that Rg is an
entanglement measure with operational interpretations itself
[63,64]. We believe that the quantification of steerability
we have introduced is more fine-grained than the approach
of [24], while preserving the computational efficiency
derived from the use of semidefinite programming. For
example, while the so-called steering weight of Ref. [24]
is such that all pure entangled states, however weekly
entangled, are deemed maximally steerable, because of
Eq. (11) we know that weakly entangled pure states have
small steering robustness [50]. On the other hand, maximally
entangled states ψþ

d for large local dimension d do have large
steering robustness. Indeed, we prove in the Supplemental
Material [57] that, if d is some power of a prime number,
then RA→B

steer ðψþ
d Þ ≥

ffiffiffi
d

p
− 2.

Many questions remain open for further investigation:
a closed formula for the steerability robustness of pure
(maximally entangled) states; whether the result of
Theorem 1 can be strengthened to prove that every steer-
able state is useful for channel—rather than general
subchannel—discrimination with restricted measurements;
whether general LOCC (rather than one-way LOCC)
measurements can restore the usefulness of all entangled
states for (sub)channel discrimination.
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