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Using Venn diagrams, we classify the different types of two-mode Gaussian continuous variable
quantum correlation including directional entanglement and Einstein-Podolsky-Rosen (EPR) steering. We
establish unified signatures for one- and two-way quantum steering, entanglement, and discord beyond
entanglement in terms of an EPR-type variance. By focusing on Gaussian states, we link an optimized
condition for entanglement based on an EPR variance to the Simon-Peres condition. This allows us to
quantify the asymmetry of the Gaussian entanglement, and to relate the asymmetry to a directional
quantum teleportation protocol where Alice and Bob possess asymmetrically noisy channels. Our analysis
enables a determination of the type and direction of quantum correlation in a way that is easily measured
in experiment. We also find that for symmetric states, when discord exceeds a certain threshold, the states
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are necessarily steerable.
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The topic of quantum correlations has received much
attention in modern physics [1,2]. Entanglement is a
distinctive feature of quantum correlations [3] and it is
considered that all entangled states are useful for quantum
information processing (QIP) [4]. Einstein-Podolsky-Rosen
(EPR) correlations enable error-free predictions for the
position (and the momentum) of one particle given some
type of measurement on another. EPR correlations are
especially useful [5]. As one example, the fidelity of the
quantum teleportation (QT) of a coherent state is directly
related to the strength of EPR correlation available in the
quantum resource [6].

Very recently, there has been an appreciation of the
importance of asymmetry and direction in quantum corre-
lations [7-11]. Entanglement is a property shared between
two parties, and measures of it have not been sensitive to
differences between the quantum parties involved [12]. Yet,
the original EPR argument was expressed asymmetrically
between the two systems. The analysis by Schrodinger
introduced the asymmetric term “steering” to describe the
EPR idea of one party apparently adjusting the state of
another by way of local measurements [13]. This aspect has
been beautifully captured in two recent alternative defi-
nitions for quantum correlations: quantum discord [7,8] and
EPR steering [9,10]. Besides being of intrinsic fundamental
interest, these asymmetrical nonlocalities are attracting
a great deal of attention [14—17] for special tasks in QIP,
e.g., cloning of correlations [18], quantum metrology [19],
quantum state merging [20], remote state preparation [21],
one-sided device-independent quantum key distribution
[22], and entanglement verification [23]. Surprisingly,
for mixed states, quantum discord can emerge without
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entanglement and recent experiments [24,25] have utilized
discord to distribute entanglement by separable states [26].
Despite the potential value of directional quantum corre-
lation, relatively little is known about the quantitative
link between discord and steering, and methodologies to
simply characterize quantum states for their asymmetrical
correlation [27].

Our aim in this Letter is to provide a method to
distinguish the type and direction of correlation of a given
state, with the aid of a parameter involving an EPR-type
variance. By focusing on the subclass of bipartite quantum
systems called Gaussian states [28] which have enabled
experimental milestones such as deterministic QT [29], we
find a condition for entanglement based on an EPR-type
variance that is equivalent to the Simon’s positive partial
transpose (PPT) condition [30]. This allows us to quantify
the asymmetry of the Gaussian entanglement, in a way
that is directly related to the amplification of an optimal
teleportation protocol. Asymmetrical Gaussian entangle-
ment is not fully understood, yet the feasibility of using
discord for quantum tasks involving asymmetrically noisy
channels is already of experimental interest [17,25,31-33].

Here, we address this gap in knowledge by introducing a
means to quantify and characterize directional entangle-
ment, via a symmetry parameter g?y‘gl, even where there is
no EPR steering. By further introducing an EPR-steering
parameter, we provide a simple experimental signature to
distinguish the states of different classes, whether EPR
steering, entanglement, or discord beyond entanglement.
Moreover, we arrive at conditions to identify symmetric
correlation, where the roles of Alice and Bob are inter-
changeable, and in this way arrive at an inequality sufficient
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to identify two-way EPR steering. We show how one can
produce a desired two-mode squeezed EPR state to fulfill a
given directional quantum task, by adding asymmetric
amounts of thermal noise to each subsystem. Finally, we
find that in the parameter region where the states are highly
discordant, they are also highly steerable.

We begin by considering two-party Gaussian systems
where Alice and Bob make position or momentum (or field
quadrature) measurements X 4, P4 and X, Pg, respectively,
on two well-separated modes denoted A and B. All Gaussian
properties can be determined from the symplectic form
of the covariance matrix (CM) defined as C;;=((X;X;+
X;X;))/2—(X;)(X;), where X = (X, P, Xp,Pg) is the
vector of the field quadratures [30,34-36]:

n 0 ¢ O
0 n 0 c

C= > | (1)
ci 0 m O

0 ¢ 0 m

The symplectic invariants are defined by I; = n?
I, =m?, I =cicy, 1, =det(C) = (nm—c3)(nm - c3),
and the symplectic eigenvalues of the CM of a

generic two-party Gaussian state are given as dy =

VA V/ATZ4de(C)/2  with A=1+1, 420
[31,35,36]. Our particular interest will be the subclass
¢y = —c, = ¢, which includes the major experimentally
realized CV EPR resources [29] such as the two-
mode squeezed thermal state (STS) and the two-
mode EPR state with phase-insensitive losses. The
covariance matrix elements in the STS case are n =
(ny +ng + 1) cosh(2r) + (ny —ng), m=(ny+ng+1)x
cosh(2r)—(ny —ng), ¢ = (ny + ng+ 1)sinh(2r), where
ny,np are the average number of thermal photons for
each system and r denotes the squeezing parameter. We
stress, however, our classification is for all two-mode
Gaussian systems, and does not restrict to this case.

Entanglement.—In this Letter, we normalize the vacuum
fluctuations so that AXAP > 1. Simon’s PPT criterion for
entanglement is [30]

Entppy = (nm — ¢})(nm — c3) + 1

—(n* +m? +2|cicy|) < 0. (2)

This is a necessary and sufficient condition for the
entanglement of two-mode, two-party Gaussian systems.
Using the PPT criterion (2), we see that a two-mode
STS is entangled iff r exceeds the threshold value r:
cosh?(ren) = (g + 1)(ng +1)/(ny +ng + 1) [15]. The
complete set of PPT entangled states is depicted as
contained within the green ellipse of Fig. 1. This set is
not exhaustive for Gaussian states as seen by the values

D,,=0

E,, <1 PPT

FIG. 1 (color online). The Venn diagram relations classifying
the different types of quantum correlation for two-mode, two-
party Gaussian states. The larger blue circle II contains states
satisfying the Tan-Duan criterion for entanglement A_,; < 1. The
inner blue circle I contains states with the symmetric two-way
EPR steering correlation given by A, < 0.5. The set of all
entangled states quantified by the Simon-PPT criterion Entppr <
0 (equivalent to Ent < 1) are contained in the larger green ellipse
VI. The smaller orange-pink IV and yellow V ellipses enclose
states that display the directional steering, given by the EPR-Reid
paradox condition E,p <1 and Eg4 < 1, respectively. Their
intersection (colored dark yellow) is the set of two-way steerable
states, which is a strict superset of the states in I. All two-way
steerable states are a subset of the entangled states quantified by
the Tan-Duan condition A, < 1. One-way steering states are a
strict subset of the PPT entangled states, and are strictly not
contained in the Tan-Duan circle A, < 1. The symmetric states
with g?y‘,lf1 =1 (n = m) are depicted at the very center of the
diagram (dashed line). Those with gfy‘g > 1 (n > m) are to the
right of the centre line; those with gfy‘ﬁ, <1 (n < m) to the left.
The outer ellipse III contains the set of Gaussian states with
nonzero quantum A and B discord.

for Entppy versus the thermal noises n, and nz shown in
Fig. 2(a) [31,32].

Entanglement can also be determined using an EPR-
type variance [34,37-40]. On considering the weighted
difference variances [A(Xy — g, Xg)]? = n — 2g,c, + g>m,
[A(Ps+ g,Pp)]> = n+2g,c, + gpm, it is straightfor-
ward to prove that entanglement between modes A and
B is confirmed if [34,40]

Ent?‘B = A(Xp — 9 Xp)A(Ps +9,Pp)/(1+g:9,) < 1.
(3)

We use the notation (Ax)? = (x?) — (x)2. This condition
does not assume Gaussian states, and is sufficient to
confirm entanglement for all states. Here g,, g, are arbitrary
real constants that can be optimally chosen to minimize

the value of Ent?lB. For the restricted subclass of Gaussian
EPR resources where ¢; = —c, = ¢, there is symmetry
between the X and P moments and a single g = g, = g, is

optimal. This choice of g that minimizes Ent_f,”B
found to be g = gfylfq, where

is readily
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FIG. 2 (color online). Contour plots show the effect of
asymmetric noises n, and ng on quantum correlation, for the
two-mode STS with r = 0.6: (a) entanglement measured by Ent,
(b) discord measured by D 45, and (c) the steering parameter £ 4.
In (c), the states can be used as quantum resources with EPR
steering (below red curve), entanglement (below green curve), or
discord beyond entanglement (above green curve) as explained in
text. (d) shows the different regions defined in Fig. 1 certified by
criteria of steering, entanglement, discord, and unphysical CMs
(light gray area UP) versus n and m.

ggy‘m =(n—m+\/(n—m)*+4c%)/2c. (4)

Manipulation shows that the EPR-type variance bound

Ent, A8~ 1 and the Simon-Peres PPT bound Entppr < 0 are
equivalent, as shown in Fig. 2(a). The optimal gains for
c| # ¢, are given in the Supplemental Material [41]. The
minimum EPR variance is defined Ent =
g= gfy‘ﬁ, and its smallness gives a quantification of the
Gaussian entanglement. Note that the entanglement
between modes A and B can be also confirmed by

EntBIA

AlB
Entg| , where

< 1. The quantification of entanglement is sym-

BA o AB

metric with respect to A and B: That is, Ent J = Ent,

where ¢ = ggym =1/ ggym This is to be expected:
Entanglement is by definition a quantity shared between
two systems, and its PPT threshold does not account for the
directional properties associated with quantum correlation
[see Fig. 2(a)].

Symmetric “Tan-Duan” entanglement.—Where one has
either pure states or else complete symmetry between the
systems so that ¢; = —c, = ¢ and n = m, we find that the

symmetry parameter is g?y‘ﬁ = 1. The PPT criterion (3) for

entanglement then reduces to EntA‘B < 1, which (for

00 02 04 06 08 1.0
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FIG. 3 (color online). The allowed Gaussian steerability
(shaded region) versus discord for the symmetric Gaussian case
restricting to ¢; = —¢, = ¢ and n = m.

¢y = —c,) is equivalent to the Tan-Duan entanglement
condition [34,37]

Aewe = {[AXa = Xp)* + [A(PA + Pp)IP}/4 < 1. (5)

Resources with the property (5) are required for the CV
quantum teleportation of a coherent state via the protocol
of Braunstein and Kimble [6,35]. These states are depicted
as enclosed within the dark blue circle II of Fig. 1. This type
of entanglement can be created from asymmetric mixed
states in special cases: for example, the STS squeezing
threshold for Tan-Duan entanglement is r > ror =
ln\/nA + ng + 1.

Asymmetric entanglement.—The directional correlation
happens for asymmetric mixed states, which create the
ellipses of Fig. 1 outside the blue circle II (symmetry
parameter gg ., # 1). Sufficiently asymmetric systems
(where n > m) arise, for example, when coupling massive
objects to laser pulses, and require the full PPT entangle-
ment test (outside the blue circle II, but within the green
ellipse) as illustrated in Fig. 1 [49].

Discord—Quantum discord is by definition a measure
of asymmetric quantum correlation between the two sub-
systems [7]. The “quantum A discord” that considers the
conditional information for Alice’s system A based on
measurements on system B by Bob has been derived for a
Gaussian state by Giorda and Paris [31] and Adesso and
Datta [32] as

Dap = f(m) = f(dy) = f(d-) + f(2). (6)
where z=(n+mn+cc,)/(m+1) and f(x)=[(x+1)/2] x
In[(x+1)/2]—[(x—1)/2]In[(x—1)/2]. With the exchang-
ing m <> n and hence I, <> I,, we obtain the result for
the B discord Dp. Quantum A discord is obtained for
all bipartite Gaussian states that are not product states,
although there are nonentangled states that have nonzero
discord [31]. The quantum discord is the difference
between two classically equivalent definitions of condi-
tional entropy [7,8,31]. Denoting the von Neumann entropy
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of the quantum state p by S(p), the first S(pa5) ~ f(d;) +
f(d_) — f(m) arises from using the definition of mutual
information based on the bipartite state p,p. The second
arises from quantization of the expressions for the
conditional entropy: H(pap)=>_«P(k)S(pap)~f(/2)
where pp(k) is the probability of result k for a measurement
at B, and S(pai) = >_;p(ilk)S(pix) where p(ilk) is the
conditional probability of outcome i at A given the result
k at B. The discord (6) is obtained by minimizing the
mismatch over all Gaussian measurements. The terms in
the quantum A discord H quantify the available informa-
tion for the conditional state of A after measurement on B,
and also reflect uncertainty in measurements of Alice when
Bob’s outcome k is known.

EPR steering.—Interestingly, this reminds us of the other
asymmetric nonlocality, EPR steering from B to A (B — A)
[1,9,10], which is realized if the EPR-Reid paradox con-
dition [35, 38]

Eyp = A XapAintPap < 1 (7)

is satisfied [10]. The condition becomes necessary and
sufficient for steering B — A for two-mode Gaussian
systems [9]. Here [AyeXy 57 = Y i pp(k)[A(X4]K)]%,
where [A(X4]k)]? is the variance of the conditional dis-
tribution for Alice’s X, conditional on the result k. The
measurement at B is selected to minimize the quantity
[AianA|B]2- The [AianA\B]z =2 wps(K)[A(PAK)? is
defined similarly, for the momentum P,. The states with
the steering property (7) (B — A) are depicted by the small
orange-pink ellipse of Fig. 1. The EPR steering condition
(7) also holds if we define [A;,cX 4 5]* = [A(X4 — g,'Xp)]?
and [Ay¢Pyp)* = [A(P4 + g,/ Pp)]*, where g, ,/ are real
constants, adjusted to minimize the variances [39]. For
Gaussian states the optimization ensures the equivalence of
the two definitions [39]. The quantity E4p is minimized to
Eyp = +/(n—c}/m)(n—c3/m) by the optimal factors
gy = c1/m, g, = —c,/m [35,38], and its smallness gives a
measure of the degree of the steering nonlocal correlations.
Ideally, E4 3 becomes zero in the limit of large r. As with
discord, we obtain the result for the steering from A to B
(A — B) by interchanging parameters: Ep|4 is minimized to
Egy = V/(m—=c3/n)(m - c3/n) where g,' = ¢,/n, g, =
—cy/n (small yellow ellipse of Fig. 1). Returning to the
two-mode STS example, to satisfy steering E4p <1 or
Epa < 1 requires the squeezing r to exceed the threshold
value given by ryp and rpy, respectively, where
cosh?(ry5)=(2n4+1)(np+1)/(14ng+ny) or cosh® (rp4) =
(na+1)(2np+1)/(1+np+ny).

Two-way EPR steering.—Two-way steering is confirmed
when both E,p <1 and Ep, < 1, as given by the dark
yellow intersection of the two smaller ellipses of Fig. 1. The
STS state with 7 > {74/, 7'g/a }max can be used to produce

two-way steering, which is only possible when
|ng —ng| < 1/2. A single criterion sufficient to certify
two-way steering (without the assumption of Gaussian

B <0.5 where 9=gx=gp=1, or Ay < 0.5.

This is seen on noting that Ent?‘:Bl < 0.5 becomes E4p < 1

and Eg, <1 when we take g," = g, = 1, and that alge-

states) is Ent/;

braically A, > Ent‘g‘fl. The condition A, < 0.5 is also
the Grosshans and Grangier condition required of an EPR
resource for the secure no-cloning teleportation of a
coherent state [47]. For symmetric states, g, = 1, the
condition reduces to Ent < 0.5. The states with this
strongly symmetric two-way EPR steering correlation
A < 0.5 are depicted by the inner light blue circle I
of Fig. 1. For STS states, this requires the squeezing
parameter r to exceed the threshold value r > rgr =
Iny/2(ny +ng+1). We see that A, <0.5 is not a
necessary condition for two-way steering (nor Ent < 0.5
in the symmetric case): Two-way steering is possible when
{raiB: "BlA fmax < T < TsT, as shown by the dark yellow
region not contained in I (Fig. 1), and for the symmetric
pure two-mode squeezed state (ny = ng = 0) for all r #0
(corresponding to all values of entanglement, includ-
ing Ent — 1).

Unified signature and application of asymmetric
correlation.—We note that the inequality (3) with g =

g?ylff, will determine the Gaussian entanglement for the
subset of states where ¢; = —c¢, = ¢. The inequalities (3)

and (2) both then require nm — ¢? + 1 —n —m < 0. This
can be written as a bound on the steering parameter:

m+n-—1
Ej g = EA\B(Q) < o (8)

with factor ¢ = ¢/m. This can be also written as Epjy =
Epa(g) < (m+n—1)/n with the optimal gain factor
¢ = c¢/n. Hence, we establish a unified experimental
measure of quantum correlation for this subset: EPR
steering if E4p <1 is satisfied [below the red curve in
Fig. 2(c)]; entanglement if Eyp < (m +n—1)/m [below
the green curve in Fig. 2(c)] and discord beyond entangle-
ment if Eyp > (m +n—1)/m [above the green curve in
Fig. 2(c)]. By a single steering measure E,p, one can
quantify quantum correlation of a given Gaussian state.
Note, also, that our classification uses criteria that are
sufficient (but not necessary) to confirm entanglement and
steering for an arbitrary quantum state.

Generally, the presence of asymmetric noises creates the
possibility of asymmetric steering and discord, making the
steering and disturbance from A to B more difficult than
from B to A (or vice versa), as illustrated in Fig. 2 for the
STS with r = 0.6. Entanglement is absent for Entppy > 0,
as shown in Fig. 2(a). All regions show “quantum A
discord,” given by Dy > 0 [Fig. 2(b)] [31]. Thermal
noises tend to suppress entanglement, for which the
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dependence on n, and np is symmetric. However, the effect
on the discord is more complex and asymmetrical. We can
see that D 4| is maximized when most of the thermal noise
is placed on the unmeasured system A. The sensitivity of
the steering parameter E4p to the noises is asymmetrical
and “one-way steering” (the states contained in the smallest
left ellipse of Fig. 1 but exclusive of the right one) is
evident. The value of E,p is minimized (and steering
increased) when most of the thermal noise is placed on the
system B, since Eqp < (m+n—1)/m~1 when m > n.
With the knowledge of these different sensitivities, one can
prepare states with the desired type of correlation.

The behavior of discord is strongly related to steering.
We note from Fig. 3, which is general for the subset of
symmetric states, that in the parameter region where the
states are highly discordant, they are also highly steerable.
We also notice that a state is always steerable provided that
the discord exceeds a certain threshold. This is consistent
with the picture of EPR-type disturbances to Alice’s system
because of Bob’s measurements [41].

Finally, we emphasize potential applications of asym-
metric quantum correlation. We show in the Supplemental
Material [41] that the directional entangled states are useful
as a resource for the quantum amplified teleportation of

a coherent state |a) — |gfy‘§la) from Alice to Bob (if

gfy‘ﬁ1 >1), or |a)— |gfy‘ga> from Bob to Alice (if

B|A . . .
gsy‘m < 1). In conclusion, our results offer a unified sig-

nature to examine the type and direction of correlation for a
given quantum state, and suggest asymmetric correlations
to be promising candidates for quantum tasks requiring a
directional operation.
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