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We explain how and why all thermodynamic properties of spin systems can be computed in one and
two dimensions in the whole range of temperatures overcoming the divergence towards zero temperature
of the standard high-temperature series expansions (HTEs). The method relies on an approximation of the
entropy versus energy (microcanonical potential function) on the whole range of energies. The success is
related to the intrinsic physical constraints on the entropy function and a careful treatment of the
boundary behaviors. This method is benchmarked against two one-dimensional solvable models: the
Ising model in longitudinal field and the XY model in a transverse field. With ten terms in the HTE, we
find a spin susceptibility within a few percent of the exact results over the entire range of temperatures.
The method is then applied to two two-dimensional models: the supposedly gapped Heisenberg model
and the J1-J2-Jd model on the kagome lattice.
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Recent years have seen the development of a plethora
of magnetic materials that might be realistic candidates for
the long-sought spin liquids [1–8]. In this quickly maturing
field, it is now highly desirable to compare the experimental
properties of these new states of matter with theory.
Modelization of the magnetic interactions in a Mott
insulator is particularly challenging, and first principles
calculations of the magnetic interactions are delicate [9,10].
In a pragmatic approach, the experimentally measured
specific heat CV and/or uniform spin susceptibility X
can be compared to high-temperature series expansions
(HTEs) of spin models [11]. This simple method, however,
is not sufficient for frustrated magnets due to divergence at
low temperatures, and increasing the length of the HTE
series and/or using Padé approximants do not help much to
obtain useful information at temperatures lower than the
main interaction. But, as was noticed during the early years
of this quest [12], the interesting physics in frustrated
systems appears in a range of temperatures at least an order
of magnitude lower than the main coupling and particularly
for competing interactions where the temperature range
available with the raw HTE is insufficient.
Many mathematical methods have been tried to obtain

low-temperature properties of magnets. For example,
biased differential approximants have been successful to
account for the Néel ground states of the Heisenberg model
on the square and the triangular lattice [13]. For the
spin liquids presently under investigation, other tools are
needed. In Refs. [14,15], a different approach based on the
use of sum rules was proposed to compute specific heat
at zero magnetic field. Unfortunately, in real materials,
phonon and magnetic contributions to the specific heat are
often mixed and extracting the magnetic contribution is
delicate. On the other hand, the experimental information
on the magnetic susceptibility obtained by squid or NMR

measurements is free of these uncertainties, and it would be
extremely valuable to have a way to use it. The extension of
the method presented in Refs. [14,15] to spin-susceptibility
calculation did not seem a priori possible as its success
was thought to be related to the existence of sum rules
constraining the specific heat, sum rules which do not have
an equivalent for the spin susceptibility.
In fact, deep physical reasons imply that the regulari-

zation and interpolation procedure of Refs. [14,15] is more
powerful than expected. From a conceptual point of view,
the first key point is the move from an expansion of the free
energy f as a function of the temperature T, to an expansion
of the entropy s as a function of the internal energy e.
Elementary statistical mechanics tells us that these two
descriptions (canonical versus microcanonical ensembles)
are, indeed, equivalent and that all thermodynamic quan-
tities can be computed in the thermodynamic limit in either
of them. The major drawback of the standard use of the
truncated HTE is the intrinsic divergence arising in the
low-temperature free energy: trying to extend its range of
validity towards T ¼ 0 is, thus, extremely difficult. The
choice to build a reasonable approximation of the entropy
versus energy sðeÞ [and by extension of sðe; hÞ, where h is
the external magnetic field] is more efficient because of the
following. (i) sðeÞ is defined on the finite interval from the
ground-state energy e0 to e∞ (the average energy reached
by the system for T → ∞), and its boundary values are
known: sðe0Þ ¼ 0 and sðe∞Þ ¼ lnð2Sþ 1Þ. (ii) The series
expansion of sðeÞ at e∞ can be exactly deduced from the
free energy HTE. (iii) In the absence of a phase transition
(one- or two-dimensional behavior), the function sðeÞ is an
infinitely differentiable function on �e0; e∞�, monotonically
increasing [s0ðeÞ ¼ 1=T > 0] and concave [second deriv-
atives of sðe; hÞ negative because of the stability conditions
of the thermodynamical equilibrium]. (iv) The correct
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behavior of s0ðeÞ at e0 can be determined from a qualitative
knowledge (or prediction) of the first excitations (see
below). The interpolation of sðeÞ between e0 and e∞ is,
thus, very strongly constrained by physical considerations.
All these thermodynamic conditions exist in the canonical
ensemble, and they should equally constrain physical
expansions of the free energy versus temperature and their
extrapolation. Their implementation in the computation is
never done (it would be difficult, if not impossible to do
[16]), whereas it is very simple in the present approach.
In this Letter, we show that this approach in the micro-

canonical ensemble allows the construction of sðe; hÞ and
as a consequence of all thermodynamic properties at all
temperatures in zero and moderate magnetic fields. We
concentrate on the spin susceptibility XðTÞ and test the
method on two cases where the exact function is known:
the gapped one-dimensional Ising model and the gapless
one-dimensional XY model. Then, we address two open
problems: the antiferromagnetic Heisenberg model on
the kagome lattice (supposed to be gapped [17,18]) and
the supposedly gapless cuboc2 spin liquid phase in the
J1-J2-Jd model on the same lattice [6,19].
We consider a system of N spin-1=2 in a constant

magnetic field B in the z direction. The Hamiltonian reads

Hh ¼ H0 − hSz; ð1Þ

where H0 is a spin Hamiltonian, Sz is the total spin along
B, h ¼ mB, and m ¼ gμB. In the following, h will be
considered as a parameter. The free energy per spin fh
reads

βfh ¼ −
1

N
ln Tre−βHh with β ¼ 1=T: ð2Þ

At fixed h, the entropy per spin sh and the energy per spin
eh are given by

eh ¼ fh − T
∂fh
∂T

����
h

and sh ¼ −
∂fh
∂T

����
h
: ð3Þ

From the series expansion of fðT; hÞ in T and h, we first
compute the HT series of fh at fixed h, and from now, each
function is evaluated at this h. The HT series eh and sh are
deduced, and the elimination of β between them leads to the
series expansion (SE) sSEh ðeÞ of shðeÞ around e∞ (see the
Supplemental Material [20]).
The next step consists of extrapolating sSEh ðeÞ down to

eh;0. In the absence of a phase transition, shðeÞ is, indeed,
analytic on �eh;0; 0� but singular at the boundary eh;0,
as s0hðeÞ ¼ 1=T → ∞, when e → eh;0. The key point
introduced in Refs. [14,15] is then to build from shðeÞ a
function GhðeÞ defined on ½eh;0; e∞� removing this singu-
larity. This can be achieved by noting that two main kinds
of leading singularities are met. If the system is gapless

with a specific heat CvðTÞT→0 ∝ Tα, then shðe → eh;0Þ ∝
ðe − eh;0Þ(α=ðαþ1Þ), and we choose

GhðeÞ ¼
shðeÞð1þ1=αÞ

e − eh;0
: ð4Þ

If the system is gapped, with CðTÞ ∝ ð1=T2ÞeΔh=T , then the
singularity of shðe → eh;0Þ ∝ −ðe − eh;0Þ lnðe − eh;0Þ=Δh,
and we can choose

GhðeÞ ¼ ðe − eh;0Þ
�

shðeÞ
e − eh;0

�0
; ð5Þ

where the 0 denotes the differentiation with respect to e.
GhðeÞ is a smooth function on ½eh;0; e∞� that is easy to
extrapolate. This is done as follows: from the series
expansion of sSEh ðeÞ at e∞, we deduce the series expansion
of GSE

h ðeÞ and build the Padé approximants (PA) GPA
h ðeÞ.

The inversion of Eq. (4) or (5) gives for each PA a function
sPAh ðeÞ [21]. By construction, this method preserves both
the exact information coming from the high-temperature
series and the supposed-to-be correct behavior at eh;0.
At this stage, any unphysical PA, i.e., one not verifying
shðeÞ > 0, s0hðeÞ > 0 and s00hðeÞ < 0, is discarded. The
method is considered successful when most of the physical
PAs coincide for e ∈ ½eh;0; 0�. This criterion is a way to
select the most robust approximation and extract the most
plausible information from the restricted amount of data:
it is a soft measurement of the self-consistency of this
approach (see Ref. [15], for example). Heuristically, we
noticed that spoiling the appropriate regularization at eh;0
(i.e., shifting slightly its value or changing α) prevents one
from obtaining many coincident PAs and gives erratic
results when increasing the length of the input HT series.
In order to evaluate the magnetic susceptibility XðTÞ,

we need fhðTÞ. Using s0hðeÞ ¼ 1=T ¼ β, we compute
ehðβÞ from sPAh ðeÞ and fPAh ðβÞ ¼ ehðβÞ − TsPAh ½ehðβÞ�. X
is given by

X ¼ −
∂2fh
∂B2

����
T
¼ −m2

∂2fh
∂h2

����
T
; ð6Þ

where the second derivative of fh with respect to h is
obtained by finite differences of the same PA at different h.
The results presented here have been obtained from a series
expansion of fðT; hÞ at order 4 in h, which limits the range
of applicability to small magnetic fields (not a conceptual
limit, just a current technical one).
Gapped systems: The longitudinal spin susceptibility of

the 1D Ising model ath ¼ 0.— The Hamiltonian is
H0 ¼

P
i2Si;zSiþ1;z. We use the regularizing function

defined in Eq. (5). With the exact value e0ðhÞ ¼ −1=2
and a HTE at order 4 only, X is already reproduced within
1%. Increasing the order of the series decreases both the
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maximum error and the range of temperatures where the
errors are non-negligible.
As in most cases the ground state energy EG is not

known, we have also considered it as a free parameter to
check the method. e0 is then adjusted by maximizing the
number of sPAh ðeÞ. This criterion is very accurate and gives
e0 ∈ ½−1=2 − 10−9;−1=2þ 10−7�. The error on X for the
12-order HT series is less than 2 × 10−3 (see Fig. 1), and we
find a gap exact value 1, within an error of 10−9.
Gapless model: The transverse spin susceptibility

of the 1D XY model.—The Hamiltonian reads H0 ¼P
i2ðSi;xSiþ1;x þ Si;ySiþ1;yÞ. Exact results have been

obtained by Katsura [22]. The specific heat is linear in
T at low temperatures; thus, the singularity of shðeÞ around
eh;0 is regularized through Eq. (4). Using the exact value of
eh;0 leads to the exact value of XðT ¼ 0Þ and values of X
within an error of less than 1% in the whole range of
temperatures for a 12-term HT series. Leaving eh;0 as a free
parameter, the errors never exceed a few percent in the
whole range of temperatures (see Fig. 2).
Antiferromagnetic Heisenberg model on the kagome

lattice.—The spin-1=2 antiferromagnetic Heisenberg
model on the kagome lattice H0 ¼

P
<i;j>Si:Sj is a

quintessential example of the effects of both geometric

frustration and quantum fluctuations pushed to their limit.
After much effort, decisive progress in 2D density matrix
renormalization group (DMRG) has led to the value of the
ground-state energy of this system e0 ¼ −0.4386ð5Þ and
an estimate the spin gap of the order of 0.13(1) [17,18].
The early HTE of Elstner and Young [23] extended in
this work to order 17 gives a first idea of the HT behavior of
the thermodynamical quantities. The HTE diverges around
T ¼ 1, and the Padé approximants of this series diverge
below T ¼ 0.4 (see Fig. 3).
With the hypothesis of a gapped system, Gðe; hÞ is built

using Eq. (5). The results displayed in Fig. 3 were obtained
by fixing e0 to its best-known value (e0 ¼ −0.4386) (red
curve) and to two extreme values which differ by 5 standard
deviations from the present best DMRG estimate. For a
given value of e0, the differences between the various XPA

are less than the thickness of the lines. For this range of
ground-state energies, we find a gap 0.03(1), significantly
smaller than the gap obtained in the DMRG approach.
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FIG. 1 (color online). Comparison between the present method
and exact results for the longitudinal spin susceptibility of the 1D
Ising model. Left: Our results compared to the exact solution.
Right: Differences between exact X and the various approx-
imations. HT (dotted line) stands for the HTE at order 12; PA
(dashed line) stands for the [6-6] Padé approximant; the other
curves stand for the present method using HTE at various order n.
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FIG. 2 (color online). Same as Fig. 1 for the transverse spin
susceptibility of the 1D XY model, where EG is left free to adjust.
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FIG. 3 (color online). Spin susceptibility χ and specific heat Cv
of the antiferromagnetic Heisenberg model on the kagome lattice.
Shown in the figures are the HT series expansion to order 17
(green dotted lines), the best Padé approximant of this simple
series (magenta dotted line), and the results of the present
interpolation (full lines). The sensitivity of the interpolation to
the ground-state energy e0 is displayed on both quantities. The
full red curves are associated with the best commonly accepted
value of e0 (see text).
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Compared to exact diagonalizations (EDs) on 18- and
24-spin samples [23,24], we find, in the thermodynamic
limit, a smaller value for the maximum of X (∼0.12).
In ED, the spin-spin correlations are, indeed, overempha-
sized by the very small lengths of the samples. The
existence of a low-temperature shoulder in the specific
heat is confirmed. Unfortunately, it proved impossible to
compare with the experimental data of herbertsmithite
due to sizable Dzyaloshinskii-Moriya interactions that
change the low energy spectrum of excitations and prob-
ably close the gap [25,26].
Spin susceptibility of kapellasite. This material is in a

Mott phase, and its properties are analyzed using a spin-1=2
Hamiltonian on the kagome lattice [6,19]:

H0 ¼ J1
X

hi;ji
Si:Sj þ J2

X

hhi;jii
Si:Sj þ Jd

X

hhhi;jiii
Si:Sj; ð7Þ

where Jd is the third-neighbor exchange energy across
the hexagon. The best set of parameters obtained from a
fit of the spin susceptibility down to T ¼ 17.5 K, reads
J1 ¼ −12 K, J2 ¼ −4 K, and Jd ¼ 15.6 K [19]. The
low-temperature specific heat is experimentally known to
be ∝ T2; we then use Eq. (4) to regularize sðeÞ and adjust
eh;0. The full curves of Fig. 4 are obtained for the above-
mentioned best set. As expected, they agree with experi-
ments down to 17.5 K. We see an increasing disagreement
with experimental data when going to lower temperatures.
Part of the disagreement can be attributed to the magnetic
field, which has a large effect in this system with competing
interactions (Fig. 4). Up to now, the HTEs for this model
are available to order 4 in h only, which limits the
evaluation of XðhÞ to h=jJj≲ 0.25, i.e., a magnetic field
of less than 3 T, while experimental data are at 5 T.
Nevertheless, with a small change of the coupling constants,
namely, J1 ¼ −12 K, J2 ¼ −5.2 K, and Jd ¼ 16.4 K, and
3 T magnetic field, we can fit almost all experimental data.
A small disagreement persists at the lowest temperature,
where the magnetic field effects are the most important.
The uncertainties in the parameter set are considerably
reduced with the present method because we use exper-
imental data at all temperatures and include the effect of
the magnetic field. For kapellasite, experimental data at
lower field and/or longer series in h will lead to a better
determination of the parameters.
In this Letter, we have proposed a method to extend the

HTE of the spin susceptibility down to T ¼ 0 based on a
reconstruction of the entropy versus energy per spin. We
have checked the method against gapless and gapped exact
models: the largest deviations from the exact results are
of the order of 10−2 or better with an original HT series
expansion of ten terms. We have applied this method to
open problems on the kagome lattice. Being not limited by
finite size effects, we believe in the accuracy of the present
method compared to that of exact diagonalizations,

especially at low temperatures. We have also shown that
this approach can be used to compute the spin susceptibility
in a finite magnetic field, which allows a comparison
between models and experimental squid data [20]. The
method is general in its principle and can be applied
straightforwardly to other models, whatever the size of
the spin, as long as the high-temperature expansion of the
free energy per spin is available [11]. This opens a large
range of interesting studies such as the application of the
Heisenberg model with Dzaloshinskyi-Moryia interactions
to herbertsmithite, with spatially anisotropic couplings to
volborthite [1–8]. A further conceptual question has not
been studied in the present work: is this approach able to
deal with critical phase transitions? This might be possible
for temperatures larger than Tc in as much as the correct
diverging behavior at Tc is taken into account, but this is
probably more delicate than the present work as these
divergences are singularities in the derivatives of sðeÞ
(see the Supplemental Material [20]). Building of a suitable
regularization function and benchmarking the method is a
new subject in itself, beyond the scope of this Letter.
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