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Since the demonstration of superlow friction (superlubricity) in graphite at nanoscale, one of the main
challenges in the field of nano- and micromechanics was to scale this phenomenon up. A key question to be
addressed is to what extent superlubricity could persist, and what mechanisms could lead to its failure.
Here, using an edge-driven Frenkel-Kontorova model, we establish a connection between the critical length
above which superlubricity disappears and both intrinsic material properties and experimental parameters.
A striking boost in dissipated energy with chain length emerges abruptly due to a high-friction stick-slip
mechanism caused by deformation of the slider leading to a local commensuration with the substrate lattice.
We derived a parameter-free analytical model for the critical length that is in excellent agreement with our
numerical simulations. Our results provide a new perspective on friction and nanomanipulation and can
serve as a theoretical basis for designing nanodevices with superlow friction, such as carbon nanotubes.
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One of the most intriguing concepts of modern tribology,
with exciting theoretical issues and possible practical
applications, is the idea of interface frictionless sliding
in incommensurate contact, named superlubricity [1–9]. In
such a geometrical configuration, the lattice mismatch (or
misalignment) can prevent interlocking and collective
stick-slip motion of surface atoms, with a consequent
vanishingly small frictional force, provided stiff enough
substrates compared to their mutual interaction. The search
and design of superlubric interfaces is a subject of practical
importance in nano- and micromechanics, aimed to sig-
nificantly reduce friction and wear in mechanical devices
functioning at various scales.
Until very recently, superlubricity has been observed

only on the nanoscale [1,7]. Considerable progress was
achieved in 2012 when superlubricity was found for
graphite samples of micrometer size [10]. The main
challenge, however, is to scale this process up. With the
capability of synthesizing and manipulating quasi-1D
atomically perfect objects of large length, such as tele-
scopic nanotubes [11], graphene nanoribbons [12], or
aromatic polymers [13], nanotechnologies open nowadays
the possibility to transpose the peculiar nanoscale tribo-
logical properties, such as superlubricity, to larger scales
and exploit them to control sliding friction. Recently, a
breakthrough has been achieved, demonstrating the exist-
ence of superlubricity for centimeter-long double walled
carbon nanotubes (DWCNTs) [11].
The robustness of the superlubricity phenomenon, how-

ever, remains a challenge. Even in clean wearless friction
experiments with perfect atomic structures, superlubricity
at large scales may be broken due to elasticity of contacting

samples [14–16]. Thus, a key question to be addressed is to
what extent superlubricity could persist, and what sort of
mechanisms could lead to its failure. Previous scaling
analysis of structural lubricity [14] was based on the
assumption that a slider of length L can be considered
as being essentially rigid and exhibits superlow kinetic
friction as long as its stiffness on that length scale is larger
than the corresponding interfacial stiffness. Here, we
demonstrate that this assumption does not apply for the
edge-driven configuration where the pulling or pushing
force is applied to the edge of the slider. This configuration
is typical for many frictional and nanomanipulation experi-
ments performed with atomic force microscope, as
sketched in Fig. 1(a).
In this Letter, in the framework of an edge-driven

Frenkel-Kontorova modeling approach [17,18], we estab-
lish a clear connection between the critical length above
which the superlow frictional regime disappears and the
intrinsic material properties of the system. The transition to
high-dissipative stick-slip regime is caused by the increase
of the friction force with the chain length and the occur-
rence of an abrupt and significant slider deformation
leading to a local commensuration with the underneath
substrate lattice.
We model the quasi-1D systems depicted in Fig. 1 with

a chain of N particles of mass m, linked by springs K,
having rest length ac, and driven on a periodic potential
with periodicity as and amplitude U0. As shown in
Fig. 1(b), the chain rightmost particle, with coordinate
XNðtÞ, is pulled at constant velocity V0 through a spring
Kdr representing the lateral stiffness of the cantilever. The
friction force is measured through the spring elongation,
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as F ¼ KdrðV0t − XNÞ. If we express particle coordinates
in units of ac, xi ¼ Xiac, time in units of τ0 ¼

ffiffiffiffiffiffiffiffiffiffi
m=K

p
and energies in units of Ka2c, the dimensionless equations
of motion become

ẍi¼Fsub
i þFel

i −γ _xi for i<N

ẍN¼Fsub
N þFel

N−γ _xNþkdrðv0τ−xNÞ for i¼N; ð1Þ
where Fsub

i ¼ −u0ð2π=ðas=acÞÞ cosð2πxi=ðas=acÞÞ is the
force describing interaction between the ith particle
and substrate, Fel

i ¼ ðxiþ1 þ xi−1 − 2xiÞ for 1 < i < N,
Fel
1 ¼ ðx2 − x1 − 1Þ, and Fel

N ¼ −ðxN − xN−1 − 1Þ are
elastic forces between the particles in the chain, and
u0 ¼ U0=ðKa2cÞ, v0 ¼ V0ðτ0=acÞ, kdr ¼ Kdr=K. The vis-
cous damping term γ ¼ ητ0 with η being the dimensional
damping coefficient, accounts for the driven particle
energy dissipated into the substrate microscopic degrees
of freedom.
In this Letter, we focus on stiff incommensurate systems

with an interparticle stiffness K sufficiently larger than the
atomic-scale interfacial interaction Kint ¼ U0ð2π=asÞ2; a
physical condition met by many materials, including the
quasi-1D structures depicted in Fig. 1(a). This defines, in
the thermodynamic limit (N → ∞), a continuum set of
ground states that can be reached adiabatically through
nonrigid displacement of chain atoms at no energy cost
with a consequent vanishing static friction [2,3].
The simulations have been performed for the incom-

mensurate ratio ðas=acÞ ¼ ð1þ ffiffiffi
5

p
=2Þ, corresponding to

the golden mean, and for a broad range of other parameters
(2× 10−3 <u0 < 5× 10−2, 1.0 × 10−3 < v0 < 5.0 × 10−2,

3.0 × 10−3 < γ < 7.0 × 10−2, and 1 × 10−2 < kdr < 0.2).
Similar results, as shown in the Supplemental Material
[19], have been found for the inverse ratio of as and ac,
corresponding to a “rarefied” antisoliton chain structure.
The golden mean represents the “most irrational” incom-
mensurability, and thus, the most superlubric configuration
[24]. The equations of motion have been integrated numeri-
cally using a velocity-Verlet algorithm, focusing on the
case at T ¼ 0.We have also performed simulations for finite
temperature using a Langevin dynamics simulation, finding,
however, that up to T ¼ 0.4U0=kB, the thermal effects do
not lead to qualitative changes. For DWCNTs the ambient
temperature is included in this range of parameters.
In Fig. 2 we present examples of frictional response for

chains of different lengths. Here we show results for chains
long enough (N ≳ 200, for our choice of parameters) to
neglect any appreciable boundary effects. Figure 2(a)
presents F as a function of time for incommensurate chains
of two different lengths. Waiting long enough from the
initiation of sliding, a steady state is reached by both
chains; however, the final value of the friction force is
significantly different. Moreover, while for the short chain
the transition to the steady state is smooth, for the long one
the friction force experiences a sudden jump almost
doubling its value.
The average friction force per particle hFi=N, calculated

once the steady sliding state is reached, is plotted in
Fig. 2(b) as a function of the chain length. It exhibits a
sudden jump around Ncr ≈ 800 increasing by almost
a factor of 2. For shorter chains, 200≲ N < Ncr, we found
a superlow friction state, where the friction force is only
slightly higher than the total “viscous” contribution to
friction NηV0. The latter gives the lower bound of the
dynamic friction force expected for an ideal incommensu-
rate contact. In the interval 200≲ N < Ncr, the force
hFi=N only slightly changes with N. For chains longer
than Ncr a new channel of dissipation sets up, and super-
lubricity disappears. The transition from superlow to high
friction state, as the chain length grows, is clearly related to

(b)(a)

F
(t

)/
(η

v 0
)

×
10

3

×104

<
F

>
/(

N
ηV

0)

1000
0

4

8

6000300

<
F

>
/(

ηv
0 )

×
10

3

1000 10000
1.0

1.5

2.0

2.5

N
0 5 10 15

0

0.5

1.0

1.5

2.0

FIG. 2 (color online). (a) Instantaneous friction force normalized
by the average single-particle viscous force for chains of
600 (black bottom curve) and 1000 particles (red top curve).
(b) Average friction force per particle normalized by the viscous
force as a function of the chain length. The inset shows the total
friction force as a function of the chain length. Parameter values
used in simulations: u0 ¼ 0.02, γ ¼ 3.2 × 10−2, v0 ¼ 1.6 × 10−2,
and kdr ¼ 0.1.

FIG. 1 (color online). Schematic sketch of the experimental
setups (a), and of the simulated model (b).
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the onset of the sudden jumps in the instantaneous force
shown in Fig. 2(a) and triggered by a mechanical instability
occurring for the edge-driven configuration as N
exceeds Ncr.
To give a quantitative measure of the degree of com-

mensurability of the particles with respect to the substrate
potential, we introduce the normalized distances between
particles, dðiÞ ¼ ðXi − Xi−1Þ=aS, where i ¼ 2;…; N is the
particle index. First, we focus on the dynamics at the Kdr-
driven edge of the chain. Figure 3(a) presents the time
dependence of the distance between the two rightmost
particles dðNÞ for the chain of length N ¼ 1000 that shows
the sudden jump in the instantaneous friction force, the
latter is also plotted as a reference. The correlation between
the two curves is evident, indicating that the friction
increase is related to the nucleation of a commensurate
region at the leading edge of the chain. A detailed picture of
the ongoing phenomenon can be obtained by looking at the
2D maps for distances between particles dðiÞ along the
chain as functions of the particle index and time, which are
shown in Figs. 3(b) and 3(c). For N ¼ 600 during the
frictional motion the whole chain remains in the incom-
mensurate state with all interparticle distances dðiÞ < 1. In
the steady state regime of motion the distances dðiÞ
increase linearly, on average, with the particle index from
the almost unstretched length at the trailing edge to the
strongly stretched length at the leading edge. In contrast,
for N ¼ 1000 a narrow region of particles forming the
commensurate structure nucleates at the leading edge and

propagates inside the chain in the direction opposite to the
sliding motion (movie in [19]). Upon reaching the steady
sliding, the commensurate region stabilizes at the critical
length Ncr from the trailing edge forming a sharp boundary
(domain wall) between the phases with dðiÞ < 1 and
dðiÞ > 1. The panel 3(c) inset shows the interparticle
distance distribution versus the particle index calculated
in the steady regime for the chains of N ¼ 600 and 1000.
For N ¼ 1000, as for shorter chains, the length dðiÞ grows
linearly with i for i < Ncr; however, at i ¼ Ncr an abrupt
jump in dðiÞ occurs manifesting the formation of the
domain wall. After the jump, dðiÞ continues to grow
linearly with i, keeping the same slope in both regions
i < Ncr and i > Ncr.
The particles located in the narrow commensurate region

perform highly dissipative stick-slip motion, thereby
greatly increasing the average friction force of the chain.
This is highlighted in Fig. 3(d) showing the normalized
average dissipated power PðiÞ ¼ mηlimT→∞

1
T

R
T
t0
ðXi

: Þ2dt=
ðmηV2

0Þ along the chain in the steady sliding regime. Here
t0 is the time corresponding to the onset of the steady state
regime. PðiÞ exhibits a high peak localized in the com-
mensurate region of the chain, where it is 2 orders of
magnitude higher than in the rest of the chain. This peak
localized at the domain wall is characteristic for the
mechanism of transition from the superlow to high friction
discussed here, and it is absent for chains shorter than Ncr.
In the range of parameters studied here, the peak value
scales linearly with the strength of the particle-substrate
interaction U0, and it is independent of the stiffness of the
chain K. In contrast, the width of the peak increases with K
and only slightly depends on U0. In agreement with
experimental observations for multiwalled CNTs [25], a
slightly larger dissipation, compared to the rest of the chain,
has been also found at the edges of the chain. This effect is
independent of the chain length and results from “trans-
lational symmetry” breaking at the edges.
Our simulations demonstrate that the abrupt jumps in the

friction force occur also at the transitions corresponding to
the nucleation of the commensurate states with distances
between the chain particles equal to 2as; 3as;…. However,
these transitions require very large stretching of the chain
that is beyond the linear elastic description.
In the steady state regime of motion the time-averaged

friction force can be written as [26]

hFi ¼ mηNV0

�
1þ limT→∞

1

T

Z
T

t0

1

N

XN
j¼1

�
_Xj

V0

− 1

�2

dt

�
:

ð2Þ
Deriving this equation we took into account that the energy
pumped in by the pulling force per unit time is equal to
the energy dissipated rate mηlimT→∞

1
T

R
T
t0

P
N
j¼1

_X2
jdt. For

chains shorter than the critical length Ncr using a
perturbation theory we can expand particles velocities _Xi
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FIG. 3 (color online). (a) The upper panel shows the friction
force per particle versus time, the lower one shows the normalized
distance between the two rightmost particles for a chain of 1000
particles. (b) and (c) are maps of the normalized distances
between particles as a function of time for N ¼ 600 and
N ¼ 1000, respectively. The inset to panel 3(c) shows the
distribution of distances between particles versus the particle
index calculated in the steady state regime for the chains of
N ¼ 600 (black) and 1000 (red); (d) normalized average dis-
sipated power as a function of the scaled coordinate xsc ¼ i=N for
N ¼ 600 (black) and N ¼ 1000 (red). Values of the rest param-
eters are the same as in Fig. 2.
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in terms of the small parameter ϵ ¼ Kint=K, as
_Xi ¼ _X0

i þ ϵ _X1
i þOðϵ2Þ, where _X0 ¼ V0 is the exact

solution for ϵ ¼ 0. Then, it is straightforward to find
[26] that

hFi ¼ NmηV0

�
1þ α1

�
Kint

K

�
2

þOðϵ3Þ
�
: ð3Þ

While it remains difficult to get an analytical expression for
α1, it is easy to extract its value from data fitting of the
numerical simulations obtained for intermediate chain
lengths 200≲ N < Ncr, where hFi=N is almost indepen-
dent ofN [Fig. 2(b)]. It is evident from Fig. 4(a) that, except
for one point corresponding to ϵ ¼ 0.75, the theoretical
predictions for hFi agree well with the numerical results
obtained for a wide range of values for U0, K, V0, and η.
The discrepancy for ϵ ¼ 0.75 is understandable as in this
case ϵ is no longer a small parameter.
While Eq. (3) describes well the average friction force

for the chains shorter than the critical length, it does not
work for longer chains which exhibit a transition to the
commensurate state and the corresponding jump in the
friction force. Our simulations show that above the critical
length the friction force can be calculated as a sum of the
contributions given by Eq. (3) and by the local region at the
domain wall. These two contributions correspond to differ-
ent modes of frictional motion, and depend differently on
system parameters. Equation (3) describes “viscouslike”
friction modified by the chain-substrate interactions that is
proportional to η and V0 and only slightly depends on
Kint=K. In contrast, the local contribution to hFi results
from the stick-slip motion, and it increases with U0 and K
and is practically independent of η and V0.
The results presented above show that the critical size of

the slider exhibiting the superlow friction is limited by a
nucleation of localized commensurate region that occurs
for N > Ncr. In order to find the critical length above which

the superlubricity disappears, we have to calculate the
pulling force needed to induce the structural transition from
the incommensurate to commensurate state. The applied
force Fext required to raise the distance between two
rightmost particles, i ¼ N and i ¼ N − 1, from ac to aS
can be estimated from the force balance at the Nth particle
that gives Fext ¼ Kðas − acÞ þ ðU02π=aSÞ cosð2πxN=aSÞ.
Then the minimal value of this force reads as
Fcr
ext ¼ Kðas − acÞ − ðU02π=aSÞ. This equation, which

does not include any fitting parameter, is in excellent
agreement with the results of numerical simulations [19].
In the steady state regime of motion the time-averaged

pulling force equals the friction force that depends on the
length of the chain. Thus, the transition will occur when the
friction force hFi approaches Fcr

ext. Using the equation for
Fcr
ext and Eq. (3), we can calculate the critical length as

Ncr ¼ Lcr=ac

¼ K

�
as − ac

��
1 − β

Kint

K

�
=mηV0

�
1þ α1

�
Kint

K

�
2
�
;

ð4Þ

where β ¼ ðas=2πðas − acÞÞ. Equation (4) shows that the
critical length increases with the stiffness of interparticle
interaction within the chain and decreases with increasing
the damping coefficient and pulling velocity. Ncr also
decreases with increasing the ratio, Kint=K; however, this
effect is weak since Kint=K is a small parameter.
In Fig. 4(b), we compare the theoretical predictions of

Eq. (4) with numerical results obtained for a broad range of
values for U0, K, η, and V0. For all values of system
parameters the theoretical results agree well with numerical
simulations. We would like to stress that our model relies
on only one fitting parameter α1 ¼ 2.64� 0.11 that has
been found from the comparison of analytical and numeri-
cal results for the average friction force.
We tested our theory by estimating the critical length

for DWCNTs [11]. For this system the length, energy, and
time units used in the manuscript are ac ¼ 0.2 nm,
Ka2c ¼ 49.7 eV, and τ0 ¼

ffiffiffiffiffiffiffiffiffiffi
m=K

p ¼ 80 fs, respectively
[19], and the range of dimensionless parameters studied
in our numerical simulations corresponds to
0.1 eV < U0 < 2.5 eV, 0.0375 ps−1 < η < 0.875 ps−1,
and 2.5 m=s < V0 < 125 m=s. The analytical equation (4)
can be used in a much wider range of parameters that is
inaccessible for simulations. We found that for DWCNTs
Lcr is about 50 times larger [19] than the experimentally
investigated length range exhibiting superlubric regime
[11], thus predicting the possibility for further scaling up
of superlubricity.
Here, for clarity we considered the incommensurability

of the chain and substrate structures corresponding to the
golden ratio, for which the difference between two periods
is relatively large. In this case the linear elastic description
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of the transition from the incommensurate to commensurate
state considered in the Letter can break down. However, the
results obtained are valid also for smaller misfits between
the contacting lattices. Then the stretching of the chain at
the transition is significantly smaller. It should be also
noted that our calculations of the critical length are based
on the assumption that all particles of the chain experience
the same microscopic friction proportional to the viscous
damping coefficient. However, in realistic systems there
could be additional contributions to the microscopic
friction coming from chemical interactions between the
edge particles and the surface and/or defects in the chain
structure. These effects will lead to an increase of the
average friction force, thus reducing the critical length.
While we have not yet studied our model in either 2D

or 3D systems, previous investigations of edge-driven
extended elastic sliders [27–29] demonstrated that 1D
consideration provides a good description of friction in
the 3D system. Thus, we expect that qualitative conclusions
of this work will hold also for 3D systems, in particular for
graphene layers deposited on substrates [30] and clusters
studied in the context of nanomanipulation [31]. In the
latter cases we expect shorter critical length scale because
of the larger contribution of high-friction boundaries
compared to that in 1D systems.
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