
Roton-Maxon Excitation Spectrum of Bose Condensates in a Shaken Optical Lattice

Li-Chung Ha,1 Logan W. Clark,1 Colin V. Parker,1 Brandon M. Anderson,1,2 and Cheng Chin1
1James Franck Institute, Enrico Fermi Institute and Department of Physics, University of Chicago,

Chicago, Illinois 60637, USA
2Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA

(Received 2 August 2014; published 3 February 2015)

We present experimental evidence showing that an interacting Bose condensate in a shaken optical
lattice develops a roton-maxon excitation spectrum, a feature normally associated with superfluid helium.
The roton-maxon feature originates from the double-well dispersion in the shaken lattice, and can be
controlled by both the atomic interaction and the lattice modulation amplitude. We determine the excitation
spectrum using Bragg spectroscopy and measure the critical velocity by dragging a weak speckle potential
through the condensate—both techniques are based on a digital micromirror device. Our dispersion
measurements are in good agreement with a modified Bogoliubov model.
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In his seminal papers in the 1940s [1,2], L. D. Landau
formulated the theory of superfluid helium-4 (He II) and
showed that the energy-momentum relation (dispersion) of
He II supports two types of elementary excitations: acoustic
phonons and gapped rotons. This dispersion underpins our
understanding of superfluidity in helium and explains many
experiments on heat capacity and superfluid critical veloc-
ity. What is now called the “roton-maxon” dispersion in
He II has been precisely measured in neutron scattering
experiments [3,4] and is generally considered a hallmark of
Bose superfluids in the strong interaction regime.
The roton-maxon dispersion carries a number of

intriguing features that distinguish excitations in different
regimes. The low-lying excitations are acoustic phonons
with energy E ¼ pvs, where p is the momentum and vs is
the sound speed. At higher momenta, the dispersion
exhibits both a local maximum at p ¼ pm with energy
E ¼ Δm and a minimum at p ¼ pr with energy E ¼ Δr.
The elementary excitations associated with this maximum
and minimum are known as maxons and rotons, respec-
tively. The roton excitations, in particular, are known to
reduce the superfluid critical velocity below the sound speed.
This is best understood based on the Landau criterion for
superfluidity in which the critical velocity set by the roton
minimum vc ≈ Δr=pr is lower than the sound speed vs.
The roton minimum also suggests the emergence of density
wave order [5] and dynamical instability [6].
To explore the properties of these unconventional

excitations, many theoretical works have proposed schemes
for producing the roton-maxon dispersion outside of the
He II system. Many proposals have been devoted to atomic
systems with long-range or enhanced interactions, e.g.,
dipolar gases [6–8], Rydberg-excited condensates [9], or
resonantly interacting gases [10]. Other candidates are
2D Bose gases [11,12], spinor condensates [13,14], and
spin-orbit coupled condensates [15,16]. Experimentally,

mode softening resulting from cavity-induced interaction
has recently been reported [17], which provides strong
evidence for an underlying rotonlike excitation spectrum.
In this Letter, we generate and characterize an asym-

metric roton-maxon excitation spectrum based on a Bose-
Einstein condensate (BEC) in a one dimensional (1D)
shaken optical lattice. We implement Bragg spectroscopy
and identify the local maximum and minimum in the
dispersion associated with the maxon and roton excitations.
Furthermore, by dragging a speckle potential through the
BEC we show a reduction of the superfluid critical velocity
in the presence of the roton dispersion.
We create the roton-maxon dispersion by loading a 3D

Bose condensate into a 1D shaken (i.e., periodically phase
modulated) optical lattice. The lattice shaking technique
has been used previously to engineer novel band structures
[18,19] and to simulate magnetism [20–22]. Here, we phase
modulate the lattice to create a double-well structure in
the single-particle dispersion ϵ0ðqÞ, for which the ground
state has a twofold degeneracy; see Fig. 1(a) and Ref. [21].
The double-well dispersion results from a near resonant
coupling between the ground and first excited band through
lattice shaking [21], and is a consequence of the parametric
instability of a driven anharmonic oscillator [18]. The
dispersion with quasimomentum q can be calculated
based on a Floquet model [21]. A similar double-well
dispersion can also be realized in a spin-orbit coupled
system [23–27].
The double-well dispersion is modified by atomic

interactions. Assuming the BEC is loaded into one of
the two dispersion minima at quasimomentum q ¼ q�, we
introduce the canonical momentum p ¼ q − q� in the
reference frame where the condensate has zero momentum
and energy. The new dispersion is ~ϵ0ðpÞ ¼ ϵ0ðpþ q�Þ−
ϵ0ðq�Þ. One finds that the dispersions are no longer
symmetric due to the existence of the other unoccupied
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minimum; see Fig. 1(b). Based on a modified Bogoliubov
calculation (see Supplemental Material [28] and
Refs. [29,30]), we diagonalize the Hamiltonian to obtain
the excitation spectrum

EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ̄ðpÞ2 þ 2μϵ̄ðpÞ
q

þ ΔϵðpÞ; ð1Þ

where ϵ̄ðpÞ ¼ ½~ϵ0ðpÞ þ ~ϵ0ð−pÞ�=2, ΔϵðpÞ ¼ ½~ϵ0ðpÞ−
~ϵ0ð−pÞ�=2, and μ is the chemical potential. For a system
with a double-well structure in ~ϵ0ðpÞ, the theory predicts a
roton-maxon structure with the roton minimum occurring
near p ¼ −2q�; see Fig. 1(b). Creation of an “artificial
roton” in the dispersion minimum of an analogous spin-
orbit coupled system was theoretically proposed in
Ref. [15].
Our experiment to detect this unusual dispersion starts

with an almost pure cesium condensate of N0 ¼ 30 000
atoms loaded into a crossed beam optical dipole trap
(wavelength λ ¼ 1064 nm) with trap frequencies ðωx;ωy;
ωzÞ ¼ 2π × ð9.3; 27; 104Þ Hz [21]. We turn on an addi-
tional 1D optical lattice by retroreflecting one of the dipole
trap beams in the x − y plane at 40° with respect to the x
axis. The lattice depth is approximately V ¼ 7 ER, where
ER ¼ h × 1.325 kHz is the photon recoil energy of the
lattice beam. The lattice potential is phase modulated at
7.3 kHz which is 0.7 kHz blue detuned from the ground to
first excited band transition at q ¼ 0. The phase modulation
creates admixed bands, and the ground band develops two
minima in its dispersion [21]. We preferentially load the
BEC into one of the minima by providing a momentum
kick before phase modulating the lattice [21]. We define the

direction of the kick as negative, and thus, the BEC has a
negative momentum q ¼ q� < 0 and the roton minimum is
expected at p ¼ 2jq�j; see Fig. 1(b).
To probe the dispersion we perform Bragg spectroscopy

[31] by illuminating the atoms with a sinusoidal potential
moving along the direction of the shaken lattice. The
potential is created from a programmable digital micro-
mirror device (DMD) and a 789 nm laser, which provides a
repulsive dipole force. The DMD potential with velocity v
and periodicity d [see Fig. 2(a) inset] induces a Raman
coupling between the condensate with p ¼ 0 and finite
momentum states with p ¼ h=d. When the Raman detun-
ing E ¼ pv matches the energy of the finite momentum
state EðpÞ, a resonant transfer will remove atoms from the
condensate. We illuminate the atoms with the moving
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FIG. 2 (color online). Excitation spectra. (a) We measure the
excitation spectra with N0 ¼ 30 000 atoms in a harmonic trap
(square) and in a stationary lattice (circle) with DMD-based
Bragg spectroscopy. The inset illustrates the moving optical
potential with velocity v and periodicity d created by the DMD on
the BEC (tilted ellipse); see text. The solid lines correspond to the
Bogoliubov model with chemical potentials equal to the trap-
averaged values. (b) For a BEC with N0 ¼ 9000 atoms loaded in
a shaken optical lattice, we measure the excitation spectrum along
the lattice direction. The modulation amplitude (peak to peak) is
Δx ¼ 33 nm. The solid line is the best fit based on Eq. (1). The
inset shows a typical atom loss spectrum taken at k ¼ −0.38 kL.
In both panels, the scattering length is a ¼ 47 a0.
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FIG. 1 (color online). Generation of roton-maxon dispersion in
a shaken lattice. (a) For a single atom, the lattice modulation
creates a double-well structure above a critical modulation
amplitude (top three lines) [21]. In our experiment, the atoms
are prepared at the minimum with zero or negative momentum
(q� ≤ 0, red dot); see text. (b) With atomic interactions, a roton
minimum (circle) and a maxon maximum (square) in the
excitation spectrum can form. The dashed line indicates the
critical velocity limited by the roton minimum according to
the Landau criterion for superfluidity. Dispersions are upward
offset with increasing modulation amplitude for clarity. The
lattice reciprocal momentum is ℏkL ¼ h=λ where λ is the wave-
length of the lattice beams and h ¼ 2πℏ is the Planck constant.
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potential for 40 ms and measure the residual condensate
particle number after a 30 ms time of flight (TOF).
The dispersion can be mapped out by finding the energy
which gives the strongest reduction of atom number in the
condensate for each momentum p.
To test this technique, we compare the dispersions of the

BEC in a harmonic trap and that in a V ¼ 7 ER unshaken
lattice to Bogoliubov calculations; see Fig. 2(a). The
measurement agrees well with the Bogoliubov spectrum
using the measured trap-averaged chemical potentials
μ ¼ h × 120 Hz without the lattice and μ ¼ h × 150 Hz
with the lattice.
We now consider the dispersion of a BEC in a shaken

optical lattice, where the roton feature is expected. Here,
we observe a distinct difference between the excitations at
positive vs negative momentum. We work with a modu-
lation amplitude (peak to peak) of Δx ¼ 33 nm which
guarantees a strong double-well feature. Figure 2(b) shows
the dispersion measurement, which contains a clear roton-
maxon feature at positive momentum (hereafter, the roton
direction). In contrast, we do not see this feature for
negative momentum (hereafter, the nonroton direction).
We compare the measured roton spectrum with the model

in Eq. (1). Constraining the model to the experimental
parameters only yields qualitative agreement likely due to
interaction effects [32] which effectively modify the modu-
lation amplitudeΔx and lattice depth V. Thus, we fit the data
with Eq. (1) and find the best fit to have μ¼h×58ð4ÞHz,
V¼5.9ð1Þ ER, and Δx ¼ 49ð3Þ nm. The low chemical
potential is expected and comes from the lower condensate
number as well as the weaker, momentum dependent atomic
interactions in the admixed band.
The roton energy is determined by atomic interactions

and can be controlled by tuning the scattering length.
To demonstrate this, we prepare samples with the usual
procedure but at a higher scattering length a ¼ 70 a0
followed by ramping the magnetic field to reach the desired
scattering length [33]. We measure the excitation spectrum
in the roton direction with p > 0 at six different scattering
lengths, shown in Fig. 3(a).
We adopt a global fit to the data in Fig. 3(a) based on

Eq. (1) to determine the roton energy Δr and the maxon
energy Δm. Our observation shows that we can exper-
imentally tune the scattering length to vary the roton energy
by a factor of 3. Furthermore, we can use scaling arguments
to distinguish the behavior of rotons and maxons from the
more conventional phonons. For small chemical potentials,
the excitation energy for phonons is well known to scale as
μ1=2, while the roton and maxon energies are expected to
depend linearly on μ; see Supplemental Material [28].
Furthermore, for an adiabatic ramp of the scattering length,
the chemical potential should scale as μ ¼ n0g ∝ a2=5

where g ∝ a is the interaction strength, and the condensate
density in the harmonic trap is n0 ∝ a−3=5 [34]. Therefore,
we plot the extracted roton and maxon energies as a

function of a2=5 as a proxy for the chemical potential;
see Fig. 3(b). The observed linear dependence confirms the
expected scaling for rotons and maxons.
One significant consequence of the roton dispersion is

the suppressed superfluid critical velocity vc. We measure
the critical velocity of the BEC loaded into the shaken
lattice by projecting a moving speckle pattern using the
DMD. Instead of using a single laser beam [35–37] or a
lattice with a definite spatial frequency [38], our speckle
pattern contains a broad spectrum of wave numbers up to
the resolution (k ≈ 0.55 kL) of our projection system.
Furthermore, the potential remains locally perturbative
(≈ h × 1.1 Hz) to prevent vortex proliferation [39–41].
When the velocity of the speckle pattern reaches or exceeds
the critical velocity, atoms are excited from the condensate.
To prevent excitation in the low density tail [38], we
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FIG. 3 (color online). Roton or maxon energy vs scattering
length. (a) We measure the excitation spectra at different
scattering lengths a=a0 ¼ 5 (circle), 13 (triangle), 24 (square),
40 (diamond), 55 (pentagon), and 70 (star). The condensate
number is N0 ¼ 9000. Solid curves are fits based on Eq. (1).
A global optimization procedure gives V ¼ 6.7ð2Þ ER and
Δx ¼ 43ð3Þ nm. (b) Roton energies (circle) and maxon energies
(square) extracted from the fits in panel (a) are shown at different
scattering lengths. Solid curves are fits based on Δr ¼
Aða=a0Þ2=5 and Δm ¼ Bþ Cða=a0Þ2=5, from which we obtain
A ¼ h × 9ð1Þ Hz, B ¼ h × 37ð9Þ Hz, and C ¼ h × 8ð1Þ Hz.
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digitally mask out the region of the speckle pattern which
could overlap with the edge of the cloud.
We observe a clear threshold in speckle velocity above

which the condensate number decreases; see Fig. 4(a). The
experimental sequence is similar to that used for Bragg
spectroscopy: we illuminate the cloud with a moving
speckle pattern for 100 ms followed by a 30 ms TOF.
To find the critical velocity, we fit the remaining condensate
number with a constant value intersecting a linear decay.
The intersection point determines the critical velocity vc.
Above a critical value, we observe that the condensate
fraction decreases linearly with the speckle velocity. This is
consistent with a previous observation of the critical
velocity in a Bose superfluid [38], along with a recent
calculation [42].
In order to understand the emergence of the roton-maxon

dispersion, we measure critical velocity in both the roton
direction p > 0 and the nonroton direction p < 0 with
increasing modulation amplitude Δx; see Fig. 4(b). In order
to maintain a comparable chemical potential, we prepare the
samples with a large Δx ¼ 33 nm and slowly ramp Δx to
the desired value. For small final Δx < 12 nm, vc is the
same in both directions and decreases as we approach the
critical valueΔxc ≈ 12 nm (phonon mode softening). When
the gas enters the ferromagnetic phase (Δx > 12 nm) [21],
vc increases immediately along the nonroton direction, while
in the roton direction vc remains small.
We compare the measurement with the critical velocity

based on the Landau criterion vL ¼ min jEðpÞ=pj. As the
experiment conditions closely resemble those in Fig. 2(b),
we evaluate the critical velocity with μ ¼ h × 58 Hz, V ¼
5.9 ER, and Δx scaled by 1.5, the parameters which best fit
that dispersion measurement. The calculated vL, shown as
dashed lines in Fig. 4(b), displays a disparity between the
roton and nonroton directions for Δx > 15 nm, in agree-
ment with our observation. Our critical velocities, however,
are significantly lower than vL. In early BEC experiments
[36,37], low critical velocities were observed and explained
by the large obstacles that disrupt the superflow and spin
off vortices [39–41]. In our experiment with weak speckle
potential, a likely scenario is that the critical velocity is
limited by excitations generated in the low density regions
above and below the cloud along the DMD projection
axis.
In conclusion, we observe a roton-maxon dispersion of a

BEC in a shaken 1D optical lattice based on three pieces of
evidence: the many-body excitation spectrum, the depend-
ence of the excitation energies on the atomic interactions,
and the superfluid critical velocity measurement. Our
results agree well with the Bogoliubov calculation and
suggest that the roton or maxon excitations are distinct
from acoustic phonons. Our experiment demonstrates that
shaken optical lattices are a convenient platform to generate
new types of quasiparticles in a dilute atomic gas, allowing
future study of their dynamics, stability, and interactions.

For instance, knowing the quasiparticle dispersion should
allow a future experiment to create macroscopic numbers of
rotons, leading to possible roton condensation [42,43], and
separation of the rotons into domains. In situ imaging
would allow direct observation of the temporal evolution of
such states.
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400 -200 0 200

0.8

0.9

1.0
nonroton roton

(a)C
on

de
ns

at
e

nu
m

be
r

fr
ac

tio
n

Speckle velocity v (μm/s)

v

0 10 20 30
0

100

200

300

400

roton

nonroton

C
rit

ic
al

ve
lo

ci
ty

v c
(μ

m
/s

)

Modulation amplitude x (nm)

(b)

FIG. 4 (color online). Superfluid critical velocity. (a) We
measure the residual condensate number fraction after dragging
a speckle pattern through the center of the cloud at different
velocities v along the roton direction (p > 0, solid dots) and the
nonroton direction (p < 0, solid squares). The solid lines are fits
used to determine the critical velocity. The inset illustrates the
experimental scheme; see text. (b) Critical velocities as a function
of modulation amplitude are shown. Above the critical modu-
lation amplitude, Δx > 12 nm, the critical velocity is signifi-
cantly lower in the roton direction. Our measurement is compared
with the critical velocity calculated from Eq. (1) using the Landau
criterion (dashed lines). In both panels, the scattering length is
a ¼ 47 a0 and the initial condensate number is N0 ¼ 9000.
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