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An atomistic description of shear stress relaxation in a viscoelastic liquid is developed from first
principles through accurate molecular dynamic simulations in a model Yukawa system. It is shown that the
relaxation time τexM of the excess part of the shear stress autocorrelation function provides a correct measure
of the relaxation process. Below a certain critical value Γc of the Coulomb coupling strength, the lifetime of
local atomic connectivity τLC converges to τexM and is the microscopic origin of the relaxation. At Γ ≫ Γc,
i.e., in the potential energy dominated regime, τexM → τM (the Maxwell relaxation time) and can, therefore,
fully account for the elastic or “solidlike” behavior. Our results can help provide a better fundamental
understanding of viscoelastic behavior in a variety of strongly coupled systems such as dusty plasmas,
colloids, and non-Newtonian fluids.
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It is generally accepted that all liquids are viscoelastic in
nature, meaning that their mechanical response to an
external force will be both viscous and elastic at the same
time. This can be explained through the concept of the
Maxwell shear relaxation time scale τM such that at times
t ≪ τM, the response of the liquid will be dominantly
elastic, and at t ≫ τM, the response will be dominantly
viscous. At intermediate time scales, both elastic and
viscous features will be comparable. The stresses endured
by such liquids may depend significantly upon their
deformation history, thus, leading them to exhibit strain
rate-dependent viscosity or “non-Newtonian behavior.”
Viscoelasticity is seen in a wide variety of systems ranging
from high-performance engineering materials [1], colloidal
suspensions [2], and laboratory dusty plasmas [3] to even
in rheology of blood flows [4]. This makes viscoelastic
systems a subject matter of great interest and sets up a
pressing need to develop atomistic theories that will serve
as a bridge to connect the macroscopic bulk mechanical
response to the underlying microscopic dynamics. In this
Letter, we report on such an atomistic study to delineate the
microscopic origins of viscoelastic behavior in a model
Yukawa liquid.
The Yukawa liquid provides an excellent model for a

wide variety of strongly coupled systems such as laboratory
and astrophysical dusty plasma systems, charged colloids,
and liquid metals [5,6]. The particle interaction potential
used in this liquid has the form ϕðrÞ ¼ ðQ2=4πϵ0rÞe−r=λD
where Q and λD refer to the particle charge and Debye
shielding distance, respectively. The thermodynamic state
point of the Yukawa liquid is completely characterized by
two dimensionless quantities, namely, the screening param-
eter κ¼a=λD and the coupling strength Γ ¼ Q2=4πϵ0akBT.
Here, a is the Wigner-Seitz radius such that πa2n ¼ 1, with
n being the areal number density. In a strongly coupled
Yukawa liquid (SCYL), the average Coulomb interaction

energy can exceed the average kinetic energy per particle,
thus, leading to Γ > 1. A direct consequence of this is the
emergence of solidlike features such as sustaining low-
frequency shear modes [7] originally predicted in theoreti-
cal works [8,9] and later realized in laboratory experiments
[10]. This makes SCYL a good model system to study a
range of collective phenomena in strongly coupled systems.
SCYLs have also been shown to be excellent test beds for
modeling hydrodynamic flows [11–13], self-organization
phenomena such as clustering [14], and lane formation [15]
in complex plasmas. A significant amount of numerical
work has also been done on the viscosity measurements in
SCYL using both equilibrium [16–18] and nonequilibrium
molecular dynamics simulations [19,20]. These studies
have confirmed the existence of a viscosity minimum at
some crossover value ΓcðκÞ arising due to the competition
between the ideal and excess part of the stress tensor. In
later works, viscoelasticity was also quantified using both
experiments [3,21] and numerical simulations [22] where
the crossover frequency for the real and imaginary parts of
the complex viscosity was shown to be empirically related
to the inverse Maxwell time. It was shown in Ref. [22] that
this crossover frequency develops a maximum at some
ΓcðκÞ, implying a minimum in the Maxwell time τM at the
same ΓcðκÞ. However, a systematic study of the micro-
scopic origin of shear relaxation and Maxwell time in these
liquids at various (Γ, κ) values is still lacking.
The aim of this Letter is to fill this gap and to provide

from first principles, an atomistic picture that would
provide answers to the following two fundamentally
important questions: (i) What is the connection between
the microscopic world and the macroscopic shear relaxa-
tion in these SCYL systems? (ii) Is τM the correct
representation of the duration of dominant elastic response
for these liquids, especially at Γ < ΓcðκÞ? To address the
first question, we have calculated the lifetime of local
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atomic connectivity τLC [23] and found that it converges to
the relaxation time τexM of the excess part of the shear stress
autocorrelation function for Γ < ΓcðκÞ. Since τLC corre-
sponds to the time duration during which the topology of
nearest neighbors remains intact, the fact that τexM → τLC for
Γ < ΓcðκÞ directly indicates that τexM is the correct measure
of the duration of dominant elastic response at these
temperatures and not τM. This is markedly different from
the behavior observed in ordinary liquids, where, as
reported in Ref. [23], τLC converges to τM below the
crossover temperature. It is important to note that none of
those ordinary liquids show a nonmonotonic behavior in τM
with temperature. We also show that at Γ > ΓcðkÞ, τLC
deviates from τexM directly indicating a crossover from a
kinetic regime to a potential energy dominated regime. It
should be noted that the shear relaxation time τM reported
in our work only refers to a measure of the duration of the
autocorrelation of shear stress and does not assume an
exponential relaxation of the memory function, which was
recently questioned in Ref. [24]. Our study further shows
that the infinite frequency shear modulusG∞ does not have
a minimum at any temperature, as opposed to the viscosity
data which have a well known minimum at Γ ¼ ΓcðκÞ. In
the following, we provide the details of our numerical work
and also explain the procedure used to extract quality data.
Numerical simulations.—We have performed molecular

dynamics (MD) simulations on a two-dimensional (2D)
Yukawa liquid in a canonical ensemble under periodic
boundary conditions. All distances are normalized to
Wigner-Seitz radius a, the energies are normalized to
Q2=4πϵ0a, and times are normalized to ω−1

pd . Here ωpd is
the 2D nominal plasma frequency given by
ωpd ¼ ðQ2=2πϵ0ma3Þ1=2. The simulation box contains
5016 particles at a reduced number density n ¼ π−1. The
dimensions of the rectangular box were chosen to be
125.705 291 × 125.358 517, which allows for the forma-
tion of a perfect triangular lattice below the freezing
transition. The interaction potential is truncated smoothly
to zero along with its first two derivatives by employing a
fifth-order polynomial as a switching function in the range
(rm < r < rc), where rm and rc are the inner and the outer
cutoff, respectively. We chose rm and rc subject to the
criteria ϕðrmÞ ≈ 2.27 × 10−6 and ϕðrcÞ ≈ 1.49 × 10−7,
thus, ensuring negligible perturbation to the bare
Yukawa potential. A Nose-Hoover thermostat [25] with
a time constant of 1=

ffiffiffi
2

p
is employed to maintain the

temperature at a desired Γ. To improve statistics, we have
averaged our data over an ensemble of 4000 independent
realizations. This was necessary to reduce the fluctuations
present in the long time tail of the stress relaxation function
originating from the long-range nature of the interaction
potential.
The stress relaxation function used in our work is the

autocorrelation of the shear stress tensor, GðtÞ ¼
hσxyðtÞσxyð0Þi=ðAkBTÞ with initial value of this

autocorrelation giving the infinite frequency shear modulus
G∞ ¼ Gð0Þ. The angular brackets denote the average over
the entire ensemble, with A being the area and σxyðtÞ the
microscopic stress tensor defined as

σxyðtÞ ¼
XN

i¼1

mivxi ðtÞvyi ðtÞ −
XN

j>i

xijðtÞyijðtÞ
ϕ0ðrij; tÞ
rijðtÞ

:

ð1Þ

The first term on the right-hand side has a purely kinetic
origin and is the dominating term at high temperatures,
whereas the second term is the excess part and has its origin
in particle interactions. Figure 1 shows the normalized
stress relaxation function GðtÞ of a 2D Yukawa liquid at
various coupling strengths Γ > ΓcðκÞ. It is clear that at
short times, GðtÞ has a zero slope, meaning that liquid
response is dominantly elastic. This is followed by a region
of fast decay where both the elastic and viscous effects are
comparable. At large times, GðtÞ has become much smaller
(within statistical noise) indicating a regime dominated by
viscous response and negligible elastic effects. It is also
seen from the figure that the relaxation time increases with
Γ, implying that elastic response will dominate for longer
times as Γ increases. This is mainly due to growing
structural order as shown in the inset of Fig. 1. Next, we
show our data on the G∞ calculation in Fig. 2 at various κ.
It is interesting to see that unlike shear viscosity, which has
a well-defined minimum at ΓcðκÞ (see Ref. [18]), G∞ does
not have a minimum at any temperature. The contributions
coming from both the ideal and excess part of G∞ are
shown in the inset of Fig. 2. At low Γ, the ideal part Gid

∞ is
the dominating term, whereas at high Γ the excess term Gex

∞
becomes a major contributor to the overall G∞. It is
interesting to note that the excess part Gex

∞ saturates as Γ
increases with the saturation values being higher for the

FIG. 1 (color online). Normalized stress relaxation function
GðtÞ for various Γ > ΓcðκÞ. The dashed line marks the e-folding
time. Inset: Growing hexagonal order in the liquid with Γ.
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cases with lower κ. This implies that a longer range of
interaction results in an increase in the infinite frequency
elastic response. Hence, Fig. 2 shows that the degree of
stiffness in the mechanical response of the liquid is related
to the range of interaction potential between the constituent
dust grains.
Next, we calculated the shear viscosity η by time

integrating the stress relaxation function—a procedure well
known as the Green-Kubo formula [26]. Our data for
viscosity (not shown here) are qualitatively similar to the
data shown in Ref. [18]. The ratio of η to G∞ then defines
an average shear relaxation time or the Maxwell time [27],

τM ¼ η

G∞
¼

R∞
0 GðtÞdt
G∞

: ð2Þ

Figure 3 shows a plot of τM vs coupling strength Γ for
three values of κ. Our data show the minimum in τM at
Γ ¼ ΓcðκÞ similar to the results reported in Ref. [22]. This

means that if one considers τM (the relaxation of the total
stress autocorrelation) as a measure of elastic response,
then it would imply that elasticity will persist for longer
times as the weakly coupled limit or Γ → 0 is approached.
We, therefore, conclude that τM is not a correct measure of
elasticity in these liquids as Γ → 0. To identify an appro-
priate measure of elasticity, we turn our attention to the
components of the total stress autocorrelationGðtÞ, namely,
the ideal part GidðtÞ and the excess part GexðtÞ. There is a
cross term as well, but its value is negligible at all values of
(κ, Γ). In Fig. 4, we show the relaxation times of the total
stress autocorrelation and its two components over the
range of Γ from the weakly coupled to the strongly coupled
regime. As the liquid nears freezing (Γ → Γm), τexM → τM
and the shear relaxation is dominantly due to the particle
interactions. We find that the relaxation time of the GexðtÞ
denoted here by τexM serves as a good measure of elasticity
as it goes to zero monotonically as Γ → 0. On the high-Γ
side, it rises exponentially with Γ (see inset of Fig. 4) as the
liquid approaches the freezing transition. On the other
hand, as Γ → 0, the relaxation time of GidðtÞ denoted here
as τidM becomes dominant and is entirely responsible for the
origin of τM. This means that in the weakly coupled fluid
limit, stress relaxation is purely kinetic and has very little
contribution coming from particle interactions. To further
confirm and strengthen our assertion on τexM being the right
indicator for elasticity, we go beyond the observations
based on the right asymptotic behavior with Γ and seek a
microscopic basis for this behavior by examining the
dynamics of the local atomic connectivity.
In solids, phonons are weakly scattered (long-lived), and,

hence, they constitute the microscopic origin for vibrations.
In liquids, however, they exhibit highly marginalized
behavior as they are strongly scattered due to lack of
any underlying long-range structural order. As a result,

FIG. 2 (color online). Infinite frequency shear modulus G∞ vs
Γ at various κ. Inset: Total, ideal, and excess contributions for the
case κ ¼ 0.6.

FIG. 3 (color online). Maxwell relaxation time τM calculated
from Eq. (2), showing a clear minimum around ΓcðκÞ.

FIG. 4 (color online). Relaxation times of the excess, ideal, and
total stress relaxation function for κ ¼ 0.6. Note that while the
excess term τexM continues to rise all the way to the freezing
transition where it becomes exponential (see dashed line in the
inset), the ideal part saturates to a constant value around ΓcðκÞ.
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phonons cannot be used to explain the microscopic origins
of viscosity and the infinite frequency shear modulus. One
is, thus, led to the following fundamentally important
question: What is the microscopic origin for shear relax-
ation in SCYL? To answer this question, we measure the
lifetime of the local atomic connectivity τLC [23] in SCYL.
To calculate τLC, one first assigns a set of bonds between a
central atom and its nearest neighbors at some reference
time t0. The nearest neighbors here correspond to atoms
situated at a distance less than the location of the first
minimum in the radial distribution function. Once a
reference state is assigned, we track the change in local
atomic connectivity, i.e., the central atoms losing some
neighbors. As the simulation proceeds, the average co-
ordination number will reduce, and τLC is extracted as the
time duration (elapsed since t0) in which the average
coordination falls by 1. To improve statistics, we have
averaged our data over several independent realizations. In
this sense, τLC is the average time during which any atom
will lose one neighbor. It was shown in Ref. [23] that above
a certain crossover temperature, τLC converges to the
Maxwell time τM and is, thus, the microscopic origin of
shear relaxation in a range of liquids. However, it should be
noted that none of the liquids discussed in that work
showed a nonmonotonic behavior in τM and, hence,
differed in a distinct fashion from our SCYL model. In
Fig. 5, we show our data on τLC calculated at various values
(Γ; κ) and make the following interesting observation. At
Γ < ΓcðκÞ, τLC → τexM making τLC the microscopic origin
for the relaxation time of the excess part of stress at these
temperatures. Since τLC corresponds to the time duration
where the topology of nearest neighbors remains intact,
it is also the duration of the dominant elastic or “solidlike”
response. For a comparison, we also show the
relaxation time scale of the temporal correlation of the
bond-orientation order function Ψ6 [28]. We note that at
the lowest Γ values used in this work, both τΨ6

and τLC tend
to converge to τexM with τLC showing the better overall
agreement. At higher values of Γ, both τΨ6

and τLC fail to
capture the origin of τexM . These observations directly imply
that the relevant shear relaxation time scale, which quan-
tifies the elastic response in these liquids, is τexM , which
becomes equal to τLC at Γ < ΓcðκÞ and approaches the
value of τM at Γ > ΓcðκÞ. It may also be noted that at
Γ > ΓcðkÞ, τLC deviates from τexM directly indicating a
crossover from a kinetic regime to a potential energy
dominated regime. This is a regime where interaction
between local networks becomes significant and leads to
cancellation of long-range elastic fields [23].
Summary.—We have calculated the infinite frequency

shear modulus G∞, Maxwell relaxation times (τM, τidM, and
τexM) and the lifetime of the local atomic connectivity τLC of
a 2D SCYL using accurate MD simulations. Our major
finding was the microscopic origin of shear relaxation in
SCYL, namely, that the lifetime of topology of nearest

neighbors τLC is responsible for the relaxation of the excess
part of the shear stress. We also provided a solution to the
riddle concerning the minimum in τM, which renders it
unsuitable to quantify the elastic properties of a SCYL
approaching the weakly coupled fluid limit Γ → 0. We
resolved this issue by proposing that the correct object that
quantifies elastic response of such strongly coupled liquids
is the relaxation time of the excess part of the shear stress

FIG. 5 (color online). Comparison of time scales τLC, τΨ6
, τM,

τexM , and τidM for the cases (bottom) κ ¼ 2.0, (middle)
κ ¼ 1.0, and (top) κ ¼ 0.6.
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autocorrelation τexM which goes to zero as Γ → 0 and
becomes exponential as the liquid nears the freezing
transition. Our assertion is backed by careful measurements
of the lifetime of the local atomic connectivity τLC, which
clearly shows that τexM → τLC below the crossover ΓcðκÞ
directly indicating that τexM is the duration of dominant
elastic response. The relaxation of the ideal part of shear
stress autocorrelation τid saturates with Γ > ΓcðκÞ, imply-
ing a crossover from the kinetic regime to the potential
energy regime. We also found that the infinite frequency
shear modulus G∞ does not have a minimum at any
temperature as opposed to the viscosity data, which have
a well-known minimum around ΓcðκÞ.
We believe our present findings constitute an important

step towards improving our understanding of the behavior
of strongly coupled Yukawa liquids by providing a new
insight and connection between the bulk mechanical
response and the underlying microscopic dynamics of such
liquids. The results may have wider applicability to other
viscoelastic liquids exhibiting a nonmonotonic behavior of
Maxwell time with temperature and can form the basis of
new research explorations in condensed matter physics and
complex plasmas.
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