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A cone-shaped meniscus of electrified fluids, often called a Taylor cone, is observed in rain drops and
lightning and employed in various physical instruments and experimental techniques, but the way it evolves
from a rounded shape to a cone is a long-standing puzzle. Earth’s gravity and microgravity measurements
on the meniscus whose height is just shy of droplet ejection reveal that field-driven cusp evolution exhibits
a universal self-similarity insensitive to the forcing field and scaled by the fluid surface tension and density.
Our work paves the way for dynamic control of field-driven phenomena in fluids.
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The conical meniscus of an electrified fluid with sponta-
neous sparks and fluid ejection has fascinated scientists for
centuries [1–3]. This ubiquitous phenomenon is observed
in rain drops and lightning and employed in electrospraying
and ink jet printing [2,3], mass spectrometry [4,5], ion
beam sources [6], plasma technology [7], fabrication
of synthetic fibers [8,9], and nanostructures [10]. Taylor
[11–13] showed that surface tension and electric forces
form a steady-state conical meniscus with a semivertex
angle of 49.3°. The initial loss of meniscus stability in a
sufficiently strong field can be easily predicted by linear
analysis [2,12]. However, field-driven meniscus evolution
from a rounded shape to a cone is a long-standing puzzle in
this well-studied phenomenon as it overlaps with sponta-
neous fluid ejection. In this Letter, we report data on the
meniscus whose height is just shy of droplet ejection.
Earth’s gravity and microgravity measurements, spanning
more than 2 orders of magnitude in length and time, reveal
that field-driven cusp evolution exhibits a universal self-
similarity insensitive to the forcing field while a 50%
increase in applied voltage shortens the overall time for the
meniscus to rise by more than an order of magnitude.
Until now, two types of apparatus pioneered in 1914–

1931 by Zeleny [14–16], Wilson and Taylor [17], Nolan
[18], and Macky [19] have been used to electrify fluids. In
Refs. [14–17], voltage is applied to two bare electrodes,
one immersed in the fluid and the other placed at a certain
distance away from the fluid. In Refs. [18,19], a drop falls
through or levitates in a field produced between two
electrodes. The conditions of meniscus evolution and fluid
ejection are similar in the apparatuses of both types.
Spontaneous fluid ejection in these apparatuses effectively
prevents the study of cusp dynamics. The apparatus in
Fig. 1 was designed to create and control a cone-shaped
meniscus by limiting the buildup of an electric charge on its
surface and thus allowing a dynamic regime to be inves-
tigated without drop ejection. This is achieved by separat-
ing a drop from the ground electrode with an electrically

insulating film that does not allow electric current to flow
between the electrodes (item 4 in Fig. 1). Because of the
film presence, the drop serves as a floating electrode
capacitively coupled to the electrodes (items 2 and 5 in
Fig. 1). Details of the setup are listed in the Supplemental
Material [20]. The energized electrode is a metal tube fitted
on an insulating nozzle 0.2 mm above the nozzle exit. A
drop is ejected through the nozzle onto the insulating film.
The distance between the drop apex and the nozzle exit
is set to 0.6 mm. As the electric stress exerted on a fluid
is proportional to the square of the field strength, a field is
generated by a train of rectangular voltage pulses of
oscillating polarity (slew rate 0.75 kV=μs) to keep the
electric stress at a constant level similar to classical experi-
ments [11–19] but reduce the accumulation of charge on
the drop surface due to the voltage reversals.
Experiments were conducted over a wide range of fluid

properties (see the Supplemental Material [20], Table 1):
density ρ ∼ 1 g=cm3, viscosity η ∼ 1–76 cP, conductivity
σ ∼ 0.02–104 μS=cm, dielectric constant ε ∼ 2.7–90,

FIG. 1 (color online). Concept of experimental apparatus. 1,
Electrically insulating nozzle; 2, energized electrode; 3, drop;
4, insulating film; 5, ground electrode; 6, insulating cover of
3D movable stage; Vp, pulse voltage; Tp, time of reversing
voltage polarity.
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surface tension γ ∼ 30–72 dyn=cm, contact angle on the
insulating film (item 4 in Fig. 1) θ ∼ 9–56°, charge
relaxation time te ¼ εε0=σ ∼ 1 ns–13 μs with the vacuum
permittivity ε0. The fluids as numbered in all figures
were (1) deionized (DI) water, (2) DI water with 0.1M
KCl, (3) polyethylene glycol PEG 200, (4) polymer solution
simulating human saliva, and (5) low-conducting lubricant
with 0.02 wt % graphene. The application of high-voltage
pulses to a drop of pure lubricant caused the meniscus
to oscillate but did not produce a pointed protrusion. As
the lubricant conductivity was increased by adding
graphene flakes, a drop formed a cone-shaped meniscus.
Measurements under microgravity (1.5 μg) on the Inter-
national Space Station (ISS) allowed length scales to be
expanded from the submillimeter to the centimeter range.
Depending on the pulse voltage Vp and length Tp

(Fig. 1), three modes of meniscus evolution were observed
under Earth’s gravity [Fig. 2(a) for DI water and similar for
other fluids]. Mode 1 occurs when the electric force is weak
compared with the capillary and gravity forces. The fluid
level rises to form a stationary bell-shaped hump in the high
field region under the nozzle. When Vp exceeds the
instability threshold, the portion of the fluid meniscus
under the nozzle rises, oscillatory or monotonically for
larger voltage and fluid viscosity, and produces a pointed
protrusion. The threshold field ∼2 kV=mm is similar to the
value observed in conventional apparatuses [12,23].
Mode 2, the subject of this work and referred to as the

dynamic Taylor cone, is attributed to voltages forming a

cone-shaped meniscus that rises to a certain height,
recedes, and then repeats itself again and again.
Remarkably, meniscus evolution of low volatile PEG
200 drop, Fig. 3(a), does not change throughout 8 h testing
(1.8 × 105 oscillations). The overall time for the meniscus
to rise is governed by the pulse voltage. The increase of Vp

from 2 to 3 kV shortens it by more than an order of
magnitude [Figs. 2(b) and 2(c) for DI water and similar for
other fluids]. As the frequency in varying the pulse polarity
increases, meniscus oscillations gradually become more
irregular since a change in the voltage polarity disturbs the
drop by reversing the sign of the charge induced on the
fluid surface. To graphically display the effects of disturb-
ances, we plot a series of consecutive time instances tm in
which the drop apex rises to maximum height hm against
the amount of time tp that passed in each such instance after
the last change in the pulse polarity [Figs. 2(d)–2(f) for DI
water and similar for other fluids]. Meniscus oscillations at
a fixed pulse polarity 0 < tp < Tp are represented on this
diagram with a set of neighboring points in the direction of
increasing tp. Patterns of well-ordered points demonstrate
periodicity of cone-shaped tips formed at long pulses,
whereas randomly scattered points show irregular cone
formation at short pulses. However, a cone is remarkably
insensitive to disturbances and, once formed, evolves in the
same way, Fig. 3(b).
Mode 3 occurs for larger voltages. The meniscus devel-

ops a cone-shaped tip, ejects droplets and then recedes. The

FIG. 2 (color online). Deionized water. Earth’s gravity experiments on 10-μL drop. (a) Vp-Tp diagram for modes 1, 2, 3 of drop
evolution. Photos illustrate drop behavior. (b),(c) Displacement h of drop apex as a function of time t in mode 2 at Tp ¼ 0.5 s and
Vp ¼ ðbÞ 2 kV, (c) 3 kV. Cones appear in rising at h ¼ ðbÞ 0.32� 0.03 mm, (c) 0.22� 0.02 mm. Larger h at 3 kV caused by drop
spreading. (d),(e),(f) Mode 2. Time instance tm when the drop apex reaches its maximum displacement hm vs time tp passed after the last
voltage polarity reversal; circles and triangles refer to rounded and pointed ends. Vp=Tp ¼ ðdÞ 2 kV=0.5 s, (e) 2 kV=2.5 ms,
(f) 3 kV=0.5 s.
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process repeats itself several times and rapidly comes to an
end when the drop volume becomes depleted. As the air
dielectric strength ∼3 kV=mm, it begins to break down
over a rising pointed protrusion in modes 2 and 3 and
becomes partially conducting. In mode 2, a conducting
channel bridges the air gap earlier than the meniscus ejects
fluid. Once it forms, buildup of charge on the insulating
film under the drop (item 4 in Fig. 1) reduces the field
strength in the gap and chokes the electric current flow
similar to that in the dielectric-barrier discharge in air
[24,25]. The charge transferred through the air gap pro-
duces a low current (estimated ∼nA); thus, no light
emissions or sparks were observed. Self-arresting of fluid
ejection in mode 2 is achieved by designing the electrical
capacitance between the drop and the ground electrode to
be much larger than the capacitance between the drop and
the energized electrode. The voltage across the air gap
therefore prevails when a pointed protrusion rises but
reduces drastically as a discharge occurs.
Microgravity experiments on DI-water drops of several

centimeters in sizewere carried out aboard ISS inExpedition
30=31. Voltage was produced with a belts-and-rollers type

Van de Graaff generator assembled from LEGOs (details in
the SupplementalMaterial [20]).Water placed on the 9.8-cm
diameter collector sphere formed a cone-shaped meniscus
when another drop situated on an electrically insulating
support was brought nearby to serve as a floating electrode
for increasing the local field (photos in Figs. 4,5). Three
modes of meniscus evolution that appeared in Earth’s
gravity experiments were observed on ISS. Similar to the
apparatus in Fig. 1, buildup of charge on the insulating
support choked the electric current between the drops when
a discharge occurred. A cone-shaped tip formed by a drop
either emitted some fluid or receded if charge leakage
weakened the electric force. Observations of microgravity
dynamic Taylor cones in mode 2 are presented here.
The exceptional robustness of mode 2 made it possible to

study the cusp evolution over a broad range of length and
time scales. As a protrusion develops, its round top shrinks
approaching the cone shape. The limiting value of its
semivertex angle averaged over all data under Earth’s
gravity is 48.3°� 1.7°, and 46.8°� 2.4° under microgravity
that is close to the Taylor angle 49.3° [11]. Displacement of
the drop apexh is plotted in Fig. 4 over the time period of the
constant vertex angle. This log-log plot demonstrates the
power-law scaling over 2 orders of magnitude in length and
time with the slope 0.64� 0.04 remarkably close to 2=3
recently observed in computer simulations [26,27] of the
cone rise. The slope changes to 0.42 in the mode 3 regime
when a cone-shaped tip ejects droplets [28]. Startingwith the
2=3 power law, we can form a dimensionless parameter

ξ ¼ ðhm − hÞ=½γðtm − tÞ2=ρ�1=3 ð1Þ

that measures the cusp self-similarity before the singularity.
All Earth’s and microgravity measurements in Fig. 4

FIG. 3 (color online). Earth’s gravity experiments. Displace-
ment h of 10-μL drop apex as a function of time t-tm, tm is
the instance of rising to maximum hm. (a) Meniscus evolution
of low volatile PEG 200 drop throughout 8 h testing at
Vp=Tp¼2kV=0.5s. Cones appear at 0>t-tm>−3.0�0.21ms,
h > 0.31� 0.02 mm. Symbols refer to testing time. Photo at
8 h. (b) Polymer solution simulating human saliva forms
cones at 0 > t-tm > −1.67� 0.15 ms, h > 0.32� 0.02 mm
for Vp ¼ 2 kV. Symbols refer to time of changing voltage
polarity Tp. Cones form sporadically at Tp ¼ 5 and 2.5 ms
and periodically at longer Tp. Photo at Tp ¼ 2.5 ms.

FIG. 4 (color online). Dynamic Taylor cone. Displacement h of
drop apex as a function of time tm − t, tm is the instance of rising
to maximum hm. Filled symbols refer to experiments under
Earth’s gravity on 10-μL drops at Vp ¼ 2 and 3 kV with
Tp ¼ 0.5 s. Data and error bars from 20 randomly chosen videos
of three drops for each fluid. Open symbols refer to data under
microgravity on three 0.5-mL DI-water drops. Photos show
DI-water drops.
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collapse on a value of ξ ¼ 0.30� 0.05. The meniscus
semivertex angle θ and ξ converge gradually to their limiting
values as h approaches hm regardless of the drop volume,
voltage, and gravity, even though ξmonotonically increases
for small drops and decreases for large drops (Fig. 5).
Scaling of the instantaneous meniscus shape, relative height
Hðr; tÞ vs radius r, with the instantaneous distance of the tip
from its maximum hm − h ¼ Hð0; tÞ demonstrates the
universal self-similarity of cusp evolution (Fig. 5). The
self-similarity of field-induced cusp evolution appears to be
independent
of the forcing field and surprisingly resembles self-
similarity observed in breakup of liquid drops, sheets,
and eruption of jets in the absence of a field [3,29–32]
when the surface tension and inertial forces dominate.
Now we present a scaling analysis of meniscus evolu-

tion. Relative contributions of the gravity, viscous, electric,
and surface tension forces in its initial stage are represented
[2,3] by the gravity Bond number Bog ¼ ρgR2

D=γ, the
Ohnesorge number Oh ¼ η=

ffiffiffiffiffiffiffiffiffiffiffi

ρRDγ
p

, and the pulse electric
Bond number Boe¼ ε0E2

extRD=2γ with the gravitational
acceleration g, the drop diameter 2RD, and the external
field strength estimated as Eext ¼ Vp=S, where S is the

separation between the energized electrode and the drop
apex (Fig. 1). Mode 2 was observed at Bog ∼ 0.04–0.08,
Oh ∼ 0.005–0.48, Boe ∼ 0.2–1 in Earth’s gravity and
Bog<∼10−4, Oh∼10−3, Boe∼2.7–6.5 in microgravity
[20] when the electric, inertial, and surface tension forces
dominated. The self-similar cusp evolution described by
Eq. (1) with ξ ≈ 0.3 is not affected by the fluid viscosity as it
occurs at hm-h and tm-t (Figs. 4,5) much greater than the
viscous length Lη¼η2=γρ and time tη¼η3=γ2ρ scales where
viscous forces are important [3]: Lη ∼ 0.014–119 μm,
tη ∼ 0.0002–206 μs for tested fluids (see the Supplemental
Material [20], Table 1). Relative contributions of inertia
and surface tension to unsteady flow are represented by
the Weber number We ¼ ρv2L=γ measuring the ratio of
the fluid kinetic energy to its surface energy [3] and the
ratio of the fluid acceleration force to the surface
tension force A ¼ ρL2dv=dt=γ, where L and v are the
characteristic length and velocity. Taking hm-h and dh=dt
from Eq. (1) with ξ ≈ 0.3 for L and v in the cusp region
whose radial and longitudinal scales are of the same order
(Fig. 5), we obtain We ¼ 2A ∼ 0.012. Since the viscous
and inertial forces are relatively small, the capillary and
electric pressures are nearly balanced in the cusp region.
Therefore, the field in air at the cusp surface can be
approximated by Taylor’s solution for a cone in equilib-
rium Ea ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γ=ε0R
p

[11] with the radius of cusp curvature
R scaled with hm-h (Fig. 5). The cusp charge increases
with decreasing hm-h. To estimate the field Ef in fluid, we
use the balance equation for charge transport to the cusp
surface by conduction ε0dðEa − εEfÞ=dt ¼ σEf that
yields Ef=Ea ∼ te=ðtm − tÞ ≪ 1 as the charge relaxation
time te is shorter by several orders of magnitude than the
period of cusp motion (Fig. 4). Since Ef is negligible, the
field around the cusp is well approximated by Taylor’s
solution for an equipotential cone in equilibrium [11] that
yields the limiting value of the semivertex cusp angle close
to 49.3° (Fig. 5). As Ea ≫ Eext in the range of hm-h, where
ξ ≈ 0.3 (Figs. 4,5), cusp motion is not affected by applied
voltage. In fact, scaling of the instantaneous cusp shape
given by Fig. 5 and Eq. (1) represents the self-similar
solution of electrohydrodynamic equations for an inviscid
conducting fluid with the electric pressure scaled by the
capillary pressure.
The cusp evolution generates a vortex flow that can

affect mixing and separation processes in the drop
(Supplemental Material [20], Fig. 1). Examples are shown
in the Supplemental Material, Fig. 2(a), where polystyrene
spheres are concentrated under the conical apex or dis-
persed, and Supplemental Material, Fig. 2(b) [20], where
gypsum rapidly precipitates from a supersaturated aqueous
solution.
In summary, we have revealed the universal

self-similarity of the field-induced meniscus evolution from
a rounded shape to a cone that is scaled by the fluid surface

FIG. 5 (color online). Meniscus rising in mode 2. Semivertex
angle θ and parameter ξ as a function of hm-h, and the
instantaneous meniscus shape scaled with the instantaneous
distance of the tip from its maximum hm-h. (a) Experiments
under Earth’s gravity on 10-μL drops at Vp ¼ 2 and 3 kV with
Tp ¼ 0.5 s. Data and error bars for θ, ξ from 10 randomly chosen
videos of three drops for each fluid; six instantaneous shapes of a
drop at 2 kV used to construct the scaled meniscus shape.
(b) Experiments under microgravity on DI-water drops. Filled
and open symbols refer to ten 10-mL drops (top photo) and three
0.5-mL drops (bottom photo); five instantaneous shapes of a
0.5-mL drop used to construct the scaled meniscus shape.
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tension and density. The proposed noncontact technique
paves the way for dynamic control of field-driven phenom-
ena in widespread applications [2–10,33].
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