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We introduce a paradigm for spatial and modal wave manipulation based on nonlinear phononic crystals
and explore its potential for engineering wave control systems with tunable, adaptive, and multifunctional
characteristics. Our approach exploits nonlinear mechanisms to stretch the frequency signature of the wave
response and distribute it over multiple modes, thereby activating a mixture of modal characteristics and
enabling functionalities associated with high-frequency optical modes, even while operating in the low-
frequency regime. To elucidate the versatility of this approach, we consider different granular crystal
configurations that span the available landscape of crystal topologies and wave control functionalities. The
ability to switch between complementary functionalities allows rethinking nonlinear phononic crystals as
programmable acoustic ports that form the building blocks of a new structural logic framework enabled by
nonlinearity.
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Phononic crystals (PCs) are synthetic structural materials
made of periodic sequences of unit cells and capable of
performing spectral and spatialmanipulation of acoustic and
elastic waves. The hallmark feature of PCs is the ability to
develop phononic band gaps, which makes them excellent
acoustoelastic filters [1,2]. The material and geometric
properties of the unit cell control the band gap distribution,
thereby providing multiple avenues to achieve the desired
filtering properties [3–5]. PCs also display frequency-
dependent directivity [6], a property that can be exploited
for the design of directional actuators and sensors [7].
A major drawback of linear phononic crystals lies with

their inherent passivity, whereby the band structure and
directional behavior are typically fixed for a given design.
A promising avenue to achieve tunability is through the
activation of nonlinear mechanisms. Along these lines, PCs
made of soft elastomeric material have been shown to
undergo reversible changes in band structure and direc-
tionality as a result of pattern transformations triggered by
the activation of instabilities through the application of
static compressive loads [8–10].
Another route to achieve tunability is via granular

phononic crystals (GPCs) [11]. While the bulk of the work
on granular crystals has been focused on one-dimensional
chains, with special emphasis placed on localized wave
modes such as solitons and breathers [12–14], recent efforts
have investigated the behavior of 2D and 3D configurations
[15–17]. The inherent tunability of granular systems has led
to the proposition of a variety of metamaterial concepts
such as tunable acoustic lenses and rectifiers [18–20]. The
ability of GPCs to yield amplitude-dependent dispersion
relations has also been explored for the design of tunable
mechanical filters [21,22].
In contrast, the potentials of nonlinearity as a vehicle to

activate tunable spatial directivity (the ability to tune the

spatial characteristics of wave motion to specific operating
conditions) have only been marginally explored. In this
Letter, we demonstrate the potential of nonlinearity as a
tool to achieve controllable spatial and modal wave
manipulation, and we will introduce a strategy to engineer
phononic crystals that can function as programmable
acoustoelastic ports with tunable, adaptive, and multifunc-
tional characteristics. We will first illustrate the idea using a
simple abstract model and then extend the concept to GPC
architectures with different topological complexity.
Consider the nonlinear spring-mass system shown in

Fig. 1(a). The potential energy of the springs is assumed to
have a nonlinear (cubic in this case) dependence upon the
change in length. The displacements of the masses, which
determine the change in length of the spring, are assumed to
be small with respect to the initial unstretched length of the
springs, thereby allowing a linearization of the geometric
nonlinearity. Therefore, the equations of motion can be
written as

MüþKuþ εfNLðuÞ ¼ 0; ð1Þ

where u is a vector of displacements,M andK are the mass
and linear stiffness matrices, respectively, and fNL is a force
vector which has a nonlinear (quadratic in this case)
dependence on the displacements. The weakness of the
nonlinear term follows from the assumption of small
displacements of the masses with respect to the length
scale of the system [u=L ≈OðεÞ]. The angle of the cross-
links is 45°, and, for simplicity, all the parameters of the
system (masses, initial lengths of springs, and linear and
nonlinear spring coefficients) are taken to be unity. The
system is analyzed numerically and excited with a narrow-
band seven-cycle Hann-modulated sine burst, which allows
probing specific frequency ranges of the crystal [23,24].

PRL 114, 054302 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 FEBRUARY 2015

0031-9007=15=114(5)=054302(5) 054302-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.054302
http://dx.doi.org/10.1103/PhysRevLett.114.054302
http://dx.doi.org/10.1103/PhysRevLett.114.054302
http://dx.doi.org/10.1103/PhysRevLett.114.054302


If we assume very small displacements, the nonlinear
term can be completely neglected, and oscillatory solutions
of the form Aeiðξn−ΩtÞ result in an eigenvalue problem
which determines the dispersion relation between the
frequency Ω and the wave number ξ [dashed curves in
Figs. 1(b) and 1(c)]. Because of the dispersive nature of the
system, propagating wave packets also feature an envelope
modulation which occurs in a slower spatiotemporal scale
than that of the carrier oscillation [25]. When the amplitude
of the excitation is large enough that the effect of non-
linearity is no longer negligible, a more complex modu-
lation of the packet envelope is observed. In the case of
quadratic nonlinearity, the envelope modulation is modeled
by the well-known nonlinear Schrödinger equation [26]
and results in a long-wavelength component (referred to as
an asymmetric envelope soliton), whose spectral content
does not depend on the excitation frequency [23].
As we further increase the amplitude, the nonlinear term

induces effects in the same spatiotemporal scale of the
incident excitation which result in the generation of higher
order harmonics [27]. For dispersive systems featuring
multiple modes, the possibility to propagate higher har-
monics is dictated by the availability of dispersion branches
in the frequency range of the activated harmonics [28]. In
this system, it is possible to choose frequencies belonging
to the range of the acoustic branch such that the

nonlinearity produces second harmonics that belong to
the frequency range of the optical branch. As a result, the
component of the response with frequency content corre-
sponding to the second harmonic hops from the acoustic to
the optical mode. This is illustrated in Figs. 1(b) and 1(c), in
which the spectral content of the wave is shown for two
different amplitudes and superimposed to the dispersion
curves. For low amplitudes, the response only engages the
acoustic mode, as shown in Fig. 1(b). As the amplitude of
excitation is increased, we also observe the spectral
signature of the second harmonic [Fig. 1(c)], which lies
on the optical branch.
Since each branch of the dispersion relation is associated

with a specific mode shape (which dictates the deformation
of the unit cell and can be approximately determined from
the eigenvectors of the linear model), the activation of the
second harmonic by branch hopping yields an output signal
with a broader frequency spectrum that stretches over
multiple branches and blends the deformation character-
istics of multiple modes (modal mixing). In this system, for
example, the acoustic mode is characterized by in-phase
dynamics between the top and bottom particle layers,
which correspond to axial (longitudinal) deformation in
the waveguide. In contrast, the optical mode activates out-
of-phase dynamics between the layers, which result in the
activation of shear horizontal deformation. These contrast-
ing deformation patterns are indeed observed in Fig. 2,
which shows a snapshot of the spatial profile of the wave
packet. The packet features two distinct oscillatory com-
ponents (both modulated by the asymmetric envelope): a
faster, dominant feature and a slower, secondary contribu-
tion, whose difference in speed corresponds to the slight
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FIG. 1 (color online). Proof of mode hopping. (a) Schematic of
1D nonlinear crystal waveguide. (b),(c) Spectra of response for
low and high amplitudes of excitation. The high-amplitude case
displays the hopping mechanism resulting in the activation of the
optical mode for an excitation applied in the acoustic range.
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FIG. 2 (color online). Proof of concept of modal mixing.
Snapshot of a wave packet revealing the coexistence of a faster
acoustic mode (fundamental harmonic) and a slower optical
mode (second harmonic). (a) The second harmonic response
displays out-of-phase dynamics and shear deformation between
top and bottom layers. (b) The fundamental harmonic response
displays in-phase dynamics and axial (longitudinal) deformation.
The displacement is normalized by the maximum excitation
amplitude.
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gap in group velocity between the two dispersion branches
at the hopping point. We also observe that the layers
indeed exhibit in-phase dynamics in the faster harmonic
[Fig. 2(b)] and out-of-phase dynamics in the slower
harmonic [Fig. 2(a)], in accordance with the mode shapes.
In summary, the waveguide behaves as an amplitude-

controlled switch between two distinct operating modal-
ities. For sufficiently weak excitations, the energy travels
along the waveguide with high speed and primarily axial
deformation, while larger amplitudes induce a partial
energy migration to a slower mode that shears the structure
horizontally. Therefore, by simply controlling the ampli-
tude, we have access to deformation patterns and modal
attributes that are typical of the optical mode, even while we
excite the system in the low-frequency regime.
The availability of mode hopping and modal mixing

mechanisms extends to any system that can be formally
described by Eq. (1). The assumption of small displace-
ments allows in fact a multiple-scale expansion of the
equations of motion. As the amplitude of excitation is
increased, the higher order terms in the solution become
significant and give rise to higher harmonic contributions.
Since the homogeneous part of the equations at every order
of expansion have the same form [29], the solution at each
order can be expressed as a linear combination of the
eigenmodes of the corresponding linear system, thus
establishing the mode shapes associated with the non-
linearly generated harmonics. In order to demonstrate the
versatility of this general paradigm, we now revisit the
concept using 1D and 2D granular phononic crystals with
different topologies. It is worth recalling that, for suffi-
ciently precompressed crystals, the nonlinearity due to the
Hertzian contacts can be approximated by an equivalent
quadratic nonlinearity [24], thus realizing a formal analogy
with the spring-mass model discussed above.
Let us consider a granular waveguide consisting of two

monoatomic chains cross-linked by an intermediate layer of
stiffer spheres (e.g., aluminum and steel). An appropriate
choice of the bead diameters [Fig. 3(a)] results in a
configuration which can be viewed as a rectangular lattice
with interstitial inclusions featuring only one tiling in the
vertical direction. The system is precompressed in the
horizontal and vertical directions to ensure that the beads
remain in contact, and the excitation is applied at the first
bead of the lower layer. We still constrain wave motion
along the horizontal direction, but we allow each mass to
have 2 degrees of freedom (horizontal and vertical dis-
placement) to accommodate axial and flexural wave
motion. The linearized dispersion relation features six
branches, the lowest four of which are depicted in
Fig. 3(b) [30]. Although, in general, the eigenmode shapes
entail simultaneous activation of both horizontal and
vertical degrees of freedom, certain modes predominantly
excite one direction of motion.

Here, the existence of two acoustic modes implies that
even the fundamental harmonics propagate with multi-
modal characteristics featuring a mixture of axial and
flexural deformation [Fig. 3(c)]. As the amplitude is
increased, the optical modes corresponding to the second
harmonic are also activated. Since the dominant optical
mode shape involves primarily vertical displacement of the
masses, we observe an additional burst of lateral displace-
ment in the propagating packet, which travels at an
intermediate speed between those of the acoustic modes.
The lateral displacement profile, shown in Fig. 3(d),
features three distinct oscillatory contributions in the wave
profile - two corresponding to the incident acoustic
excitation and one corresponding to the nonlinearly gen-
erated harmonic with optical mode characteristics.
Therefore, this system effectively functions as a longi-
tudinal-flexural energy converter, where large amplitudes
of excitation trigger the activation of optical modes with
pronounced flexural characteristics, thus inducing a net
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FIG. 3 (color online). Mode hopping and modal mixing in a
granular waveguide. (a) Square-packed granular waveguide with
interstitial inclusions. (b) Spectra of response for high-amplitude
excitation superimposed on the linearized dispersion relation. (c),
(d) Lateral wave profile for two different amplitudes of excitation
displaying additional flexural features due to mode hopping. The
excitation frequency is normalized by the linearized resonance
frequency.
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energy transfer from longitudinal to flexural motion. This
system can be envisioned as the logical building block of an
amplitude filter in which the energy of high-amplitude
excitations is rerouted laterally away from the main wave-
guide direction.
Our next example addresses the use of nonlinearity as a

means to control spatial directivity in two-dimensional
crystals. To this end, we consider the classical hexagonally
packed 2D GPC depicted in Fig. 4, in which, for simplicity,
all the beads are made of the same material and the
confining loads are applied such that all the beads expe-
rience the same net precompression. In our simulations, the
system is excited in the vertical direction by applying a
narrow-band tone burst to the middle bead of the bottom
layer. The dispersion characteristics of 2D crystals are
described by phase constant surfaces, which relate the
temporal frequency to the two components of the wave
vector. For our purposes here, the modal structure of the
crystal is fully captured by sampling the phase constant
surfaces along the contour of the irreducible Brillouin zone,
depicted in the band diagram of Fig. 4(b), in which we
recognize two acoustic branches characterized by longi-
tudinal- and shearlike deformation, respectively. For low-
frequency excitations falling in the range of the acoustic
branches (e.g., Ω ¼ 1), the longitudinal and shear modes
coexist in the response, as suggested by the band diagram

of Fig. 4(b). This is indeed reflected in the ξ-plane
representation of the response depicted in Fig. 4(a), in
which we plot spectral lines of the computed spatial
response at a selected instant of propagation, superimposed
to the isofrequency contours of the first two phase constant
surfaces evaluated at the excitation frequency. We recog-
nize the spectral signature of a faster, long-wavelength
longitudinal mode with isotropic characteristics and a
slower, short-wavelength shear mode that is directional
with the classical sixfold symmetry of triangular lattice
topologies [Fig. 4(a)]. The bimodal response is also verified
from the spatial response shown in Fig. 4(d), in which the
color map reflects the radial component of displacement.
As we increase the amplitude of excitation, we excite a

second harmonic that lies on the longitudinal branch in a
frequency range that is above the cutoff of the shear branch
(along most of the contour of the irreducible Brillouin
zone). Thus, the second harmonic provides an additional
contribution to the longitudinal deformation of the crystal
that has shorter wavelength and lower group velocity than
the one excited by the fundamental harmonic. The ξ-plane
representation of the response [Fig. 4(c)] indicates that this
contribution features a directional behavior with a sixfold
symmetry that is rotated by 45° with respect to that of the
shear mode. The wave field shown in Fig. 4(e) confirms the
presence of three distinct wave packets in the response:
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FIG. 4 (color online). Mode hopping and modal mixing in 2D crystals. (a),(c) Spatial Discrete Fourier Transform of the wave field
highlighting the activation of different modal mixtures and different directionality patterns depending on the amplitude of excitation. (b)
Band diagram calculated along the contour of the irreducible Brillouin zone. (d),(e) Wave field snapshots for the two amplitude values
considered in (a) and (c), respectively.
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the original acoustic modes seen in Fig. 4(d) and a new
slower longitudinal mode with pronounced directional
characteristics. By increasing the amplitude of excitation
and triggering the second harmonic, we change the modal
mixture of the response in a way that globally favors
longitudinal mechanisms and also modify the directivity of
the crystal by activating new directional paths that are
normally experienced by the crystal at higher frequencies
of excitation.
In conclusion, we have discussed a strategy to obtain

spatial and modal wave manipulation in nonlinear pho-
nonic crystals using the concepts of mode hopping and
modal mixing. We have shown that the generation of higher
harmonics induces jumps in the response across the
available propagation modes, thereby giving rise to a
response with a mixture of modes and the simultaneous
activation of complementary functionalities. As a result,
functionalities that are normally associated with high-
frequency modes can be activated in the response even
while applying low-frequency excitations. The reversible
activation and deactivation of strongly nonlinear conditions
can be obtained either via external parameter tuning or as a
spontaneous response to changes in the amplitude of
excitation. The topological complexity of the crystal and
the nature of nonlinearity ultimately determine the available
opportunities for mode hopping and modal mixing, along
with the landscape of functionalities that can be activated,
thereby enabling access to virtually endless opportunities to
engineer materials with desired tunable and switchable
functionalities.
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