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We discover a transition from extended to localized quasimodes for light in a gas of immobile two-level
atoms in a magnetic field. The transition takes place either upon increasing the number density of atoms in a
strong field or upon increasing the field at a high enough density. It has many characteristic features of a
disorder-driven (Anderson) transition but is strongly influenced by near-field interactions between atoms
and the anisotropy of the atomic medium induced by the magnetic field.

DOI: 10.1103/PhysRevLett.114.053902 PACS numbers: 42.25.Dd, 05.60.Gg, 32.80.Qk, 42.50.Nn

The transition from extended to localized eigenstates
upon increasing disorder in a quantum or wave system is
named after Philip Anderson who was the first to predict it
for electrons in disordered solids [1]. More recently, this
transition was studied for various types of quantum
particles (cold atoms [2], Bose-Einstein condensates [3])
as well as for classical waves (light [4–6], ultrasound [7,8]).
In the most common case of time-reversal symmetric
systems invariant under spin rotation Anderson transition
takes place for a three-dimensional (3D) disorder only,
eigenstates of low-dimensional systems being always
localized [9,10]. Anderson localization of light may find
applications in the design of future quantum-information
devices [11], miniature lasers [12], and solar cells [13].
However, no undisputable experimental observation of
optical Anderson transition in 3D exists to date since
alternative explanations were proposed for all published
reports of it [14–16]. Moreover, we have recently shown
that the simplest theoretical model in which light is
scattered by point scatterers (atoms) does not predict
Anderson localization of light at all [17].
In the present Letter, we show that an external magnetic

field may induce a transition between extended and
localized states for light in a gas of cold atoms.
Magnetic field is an important and unique means of
controlling wave propagation in disordered media. On
the one hand, it breaks down the time-reversal invariance
leading to a suppression of weak localization in electronic
[18] and optical [19] systems and to metal-insulator
transitions in topological insulators [20]. On the other
hand, by profoundly modifying the scattering properties of
individual scatterers the magnetic field can produce an
enhancement of the coherent backscattering peak for light
scattered by atoms with a degenerate ground state [21,22].
Our work adds a new element in the mosaic of magnetic-
field-induced phenomena in disordered systems by dem-
onstrating that the removal of degeneracy of the excited
atomic state due to the Zeeman effect and the resulting

reduction of the strength of resonant dipole-dipole inter-
actions between nearby atoms [23] are sufficient to induce a
transition from extended to localized states in a dense
atomic system where Anderson localization does not take
place in the absence of the field [17]. This critical
phenomenon stands out from other magneto-optical effects
that take place in disordered media (including also the
photonic Hall effect [24] and Hanle effect in coherent
backscattering [25]) which only give rise to weak correc-
tions to wave transport.
We consider an ensemble of N ≫ 1 identical two-level

atoms at random position frig inside a spherical volume V
of radius R. The resonant frequency ω0 of atoms defines the
natural length scale 1=k0 ¼ c=ω0, where c is the vacuum
speed of light. The ground state jgii of an isolated atom i is
nondegenerate with the total angular momentum Jg ¼ 0,
whereas the excited states jeii is threefold degenerate with
Je ¼ 1. The three degenerate substates jeimi correspond to
the three possible projections m ¼ 0, �1 of the total
angular momentum Je on the quantization axis z. The
natural lifetime 1=Γ0 of the excited state sets the time scale
of the problem. The atoms are subject to a uniform
magnetic field B∥z and interact with the free electromag-
netic field surrounding them. The system “atomsþ field” is
described by the following Hamiltonian [22,26,27]:

Ĥ ¼
XN
i¼1

X1
m¼−1

ℏω0jeimiheimj þ
X
s⊥k

ℏck

�
â†ksâks þ

1

2

�

−
XN
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D̂i · ÊðriÞ þ
1

2ϵ0

XN
i≠j

D̂i · D̂jδðri − rjÞ

þ geμBB · Je: ð1Þ

Here ℏ is the Planck’s constant divided by 2π, k and s are
the wave and the polarization vectors of the modes of the
free electromagnetic field, â†ks (âks) are the corresponding
creation (annihilation) operators, D̂i are the atomic dipole
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operators, ÊðriÞ is the electric displacement vector divided
by the vacuum permittivity ϵ0, μB is the Bohr magneton,
and ge is the Landé factor of the excited state.
Previous work [28,29] demonstrated that in the absence

of magnetic field (B ¼ 0), the degrees of freedom corre-
sponding to the electromagnetic field can be traced out
leading to an effective Hamiltonian describing the

dynamics of N atoms coupled by the electromagnetic field.
This effective Hamiltonian takes the form of a 3N × 3N
Green’s matrix G describing the propagation of light
between the atoms [17]. The same approach can be used
when B ≠ 0 leading to the following Green’s matrix:

Geimejm0 ¼ ði − 2mΔÞδeimejm0 −
2

ℏΓ0

ð1 − δeimejm0 Þ

×
X
μ;ν

dμeimgid
ν
gjejm0

eik0rij

r3ij

×
�
δμν½1 − ik0rij − ðk0rijÞ2�

−
rμijr

ν
ij

r2ij
½3 − 3ik0rij − ðk0rijÞ2�

�
; ð2Þ

where Δ ¼ geμBB=ℏΓ0 is the Zeeman shift in units of the
natural line width, deimgi ¼hJemjD̂ijJg0i, and rij ¼ ri − rj.
In the absence of magnetic field (B ¼ 0) the eigenvalues

of the Green’s matrix G concentrate in a roughly circular
domain on the complex plane roughly symmetric with
respect to the vertical axis ReΛ ¼ 0 and almost touching

(a)

(b)

FIG. 1. Complex eigenvalues Λ of a representative random
realization of the Green’s matrix for N ¼ 8 × 103 two-level
atoms in a strong magnetic field (Δ ¼ 103) at low (a) and high
(b) densities of atoms.

FIG. 2. Gray-scale maps of the average IPR at low (a) and high (b) densities of atoms in a strong magnetic field Δ ¼ 103. Dashed lines
show lines along which the eigenvalues of a two-atom system would be situated for atoms placed along the direction of magnetic field
(θ ¼ 0) or perpendicular to it (θ ¼ π=2). For 0 < θ < π=2 the corresponding eigenvalues are in between the two lines. The gray level of
each small square in the figure is obtained by averaging over IPR of all eigenvalues that fall inside the square for 16 different realizations
of the random Green’s matrix.
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the horizontal axis ImΛ ¼ 0 [17,30]. The field splits the
eigenvalues into three equal groups centered around ReΛ ¼
−2mΔ (m ¼ 0, �1) [31], see Fig. 1. The three groups of
eigenvalues become well separated in the limit of strong
magnetic field Δ ≫ 1 to which we will restrict our
consideration in the present Letter. Although at a low
density ρ ¼ N=V the three groups of eigenvalues are
similar [Fig. 1(a)], the groups corresponding to m ¼ �1
start to differ significantly from the m ¼ 0 group at higher
densities [Fig. 1(b)]. In particular, the m ¼ �1 groups of
eigenvalues develop “holes” that were previously associ-
ated with Anderson localization in the framework of the
scalar model of wave scattering [32,33].
To see whether localized states indeed appear at high

densities of atoms, we analyze the inverse participation
ratios (IPRs) of eigenvectors ψn of the Green’s matrix G,
IPRn ¼

P
N
i¼1 jψnei j4=ð

P
N
i¼1 jψnei j2Þ2, where jψnei j2 ¼P

1
m¼−1 jðψneiÞmj2 is the square of the length of the vector

ψnei ¼ fðψneiÞmg. Low IPR ∼1=N corresponds to an
extended state whereas IPR ∼1=M > 1=N signals a state
localized on M < N atoms. Figure 2(a) shows that at low
density of atoms most of the eigenvectors have low IPRs
with the eigenvectors localized on pairs of closely located
atoms being an exception. These “subradiant” states exist at
any density and should be distinguished from localized
states that are due to the multiple scattering of light on
many atoms and that appear at higher densities in relatively
narrow bands of frequencies ReΛ on the left from the
resonances ReΛ ¼ �2Δ [see Fig. 2(b)]. These states may
have smaller IPRs than the subradiant states but they have
significantly longer lifetimes (i.e., smaller ImΛ).
The appearance of states localized on large clusters of

atoms in a magnetic field is due to the removal of
degeneracy of the excited states jeii by the field. As a
result, the transitions jgii → jeimi effectively decouple for
different m since photons scattered on these transitions

have frequencies discrepant by ≈2geμBB=ℏ ≫ Γ0. As a
consequence, a behavior similar to the scalar case may be
expected for a given m with, in particular, localized states
appearing at high densities of atoms as found in the scalar
model [17]. However, as follows from Fig. 2, this naive
picture is largely oversimplified because it does not explain
the absence of localized states near ReΛ ¼ 0 corresponding
tom ¼ 0. A more detailed study shows that indeed, the full
vector problem can be reduced to an effective scalar one in
the limit of strong magnetic field, but the effective Green’s
matrix following from this analysis is different from the one
corresponding to scalar waves. We have found that for
Δ ≫ 1, the group of eigenvalues corresponding to a given
m can be approximately found by diagonalizing the
effective N × N Green’s matrix

Gij ¼ ði − 2mΔÞδij þ ð1 − δijÞ
eik0rij

k0rij

×

�
cm½1 − ð−1Þmcos2θ�

þ cmð−1Þm
�

i
k0rij

−
1

ðk0rijÞ2
�
ð1 − 3cos2θÞ

�
; ð3Þ

where cm ¼ ð3=8Þ½3þ ð−1Þm� and θ is the angle between
rij and the z axis.
Equation (3) explains the differences betweenm ¼ 0 and

m ¼ �1 seen in Figs. 1 and 2. First, the far-field con-
tribution to Gij given by the second line of Eq. (3) varies
from 0 to 1 for m ¼ 0 and from 1

2
to 1 for m ¼ �1 as a

function of θ. It is thus closer to its scalar-wave value of 1 in
the former case, suggesting that the case ofm ¼ �1may be
better approximated by the scalar model than the case of
m ¼ 0. Second, the near-field term [the third line of Eq. (3)]
is a factor of 2 smaller form ¼ �1 than form ¼ 0. Because
near-field terms responsible for resonant dipole-dipole

FIG. 3 (color online). Thouless number g as a function of the bare Ioffe-Regel parameter k0l0 ¼ k30=6πρ for a strong magnetic field
Δ ¼ 103. The curves are obtained by averaging over a unit interval of ReΛ around their positions and over 50, 25, or 16 realizations of
random positions of N atoms for N ¼ 2000, 4000, and 8000, respectively. Different curves at the same value of ReΛ correspond to
different numbers of atoms N. The gray plane corresponds to g ¼ 1.
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interactions between nearby atoms suppress light scattering
[34,35] and prevent Anderson localization [17], their
weakness for m ¼ �1 is an advantage. We see therefore
that both far- and near-field features of Eq. (3) are closer to
its scalar approximation for m ¼ �1 than for m ¼ 0. This
explains the appearance of localized states for m ¼ �1
rather than for m ¼ 0 transitions.
To have a quantitative characterization of the localization

transition demonstrated in Fig. 2, we compute the Thouless
number g ¼ δω=Δω that we define as a ratio of the inverse
of the average lifetime of eigenstates δω ¼ h1=ImΛi−1 to
the average eigenvalue spacing along the horizontal axis
Δω ¼ hReΛn − ReΛn−1i [9,17,36]. At a given ReΛ, g
reaches small values g < 1 expected for localized states
only at large densities corresponding to k0l0¼k30=6πρ<1

and only for ReΛ corresponding to m ¼ �1 (see Fig. 3), in
agreement with Fig. 2. The independence of g from the
sample size at the points where curves corresponding to the
same value of ReΛ but different N cross—a hallmark of
critical behavior—is further illustrated in Fig. 4 where we
reproduce gðk0l0Þ for ReΛ slightly shifted to the left of the
single-atom resonances ReΛ ¼ −2mΔ. The localization
transition is also evidenced by the scaling function βðgÞ ¼
∂ ln g=∂ ln k0R [9] shown in the insets of Fig. 4. βðgÞ
changes sign for ReΛ ¼ −2002 and 1998 but not for
ReΛ ¼ −2 proving that the localization transition takes
place at large frequency shifts ReΛ ≈�2Δ but not around
the fundamental resonance ReΛ ¼ 0.
The localization transition reported here takes place

under conditions when not only the disorder-induced
multiple scattering of photons is strong but cooperative
effects leading to Dicke super- and subradiance [37] and
resonant dipole-dipole interactions between neighboring
atoms [34,35] are important as well. Therefore, despite its
overall similarity with the Anderson transition (see also
Ref. [38]), it remains to be seen if this transition can be
classified as such. Nonetheless, for light of a given
frequency ω ¼ ω0 − ðΓ0=2ÞReΛ the localized regime
g≲ 1 is realized only in the intermediate range of k0l0

(e.g., k0l0 ≈ 0.1–0.4 for ReΛ ¼ −2002 in Fig. 4) which

corresponds to large sizes of the atomic cloud k0R > 1
(e.g., k0R ≈ 15–24 at N ¼ 8000). Hence, the localized
states disappear in the Dicke limit k0R < 1 when the
cooperative effects dominate. This suggests that the latter
are not the main driving force behind the reported locali-
zation transition.
In conclusion, we have found that the magnetic field can

induce a transition from extended to localized states for
light in an ensemble of identical immobile two-level atoms.
This is due to the removal of degeneracy of the excited
atomic state by the field and the resulting partial suppres-
sion of resonant dipole-dipole interactions between nearby
atoms. Our theoretical predictions can be directly verified
in experiments with, e.g., Sr atoms that have a non-
degenerate ground state and were already used to study
multiple scattering of light [46]. Theoretical analysis of
light scattering in dense clouds of alkali atoms (such as,
e.g., Rb85) is, however, much more involved [35,47] and
our results cannot be trivially extended to this case.
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