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Delocalization error is one of the most fundamental and dominant errors that plagues presently used
density functional approximations. It is responsible for a large class of problems in the density functional
theory calculations. For an effective and universal alleviation of the delocalization error, we develop a local
scaling correction scheme by imposing the Perdew-Parr-Levy- Balduz linearity condition to local regions
of a system. Our novel scheme is applicable to various mainstream density functional approximations. It
substantially reduces the delocalization error, as exemplified by the significantly improved description of
dissociating molecules, transition-state species, and charge-transfer systems. The usefulness of our novel
scheme affirms that the explicit treatment of fractional electron distributions is essentially important for
reducing the intrinsic delocalization error associated with approximate density functionals.
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Despite the enormous success of density-functional theory
(DFT), the mainstream density functional approximations
(DFAs) often lead to various failures. Delocalization error
[1–3] is one of the most fundamental and dominant errors
that plagues the DFAs. Consequently, the local density
approximation (LDA), the generalized gradient approxima-
tions (GGAs), and the hybrid functionals such as B3LYP
[4,5] predict too high binding energies, too low reaction
barriers, and too high electric polarizabilities for stretched
molecules [2,3,6]. Other related problems include the under-
estimation of band gaps and the incorrect alignment of
chemical potentials [7].
Delocalization error originates from the violation of the

Perdew-Parr-Levy-Balduz (PPLB) condition [8–11], that the
system energy as a function of electron numberEðNÞ should
be a straight line interpolating between integers. DFAs
suffering from the delocalization error yield convex EðNÞ
curves [1,7,10,12,13]. Inclusion of long-range Hartree–Fock
(HF) exchange often makes EðNÞ curves straighter [14–19],
and hence the range-separated DFAs have less severe
delocalization error [17,18,20–26]. However, range separa-
tion schemes do not guarantee a complete cancellation of
delocalization error. Delocalization error has also been
related to electron self-interaction [6,12,15,27,28]. DFAs
attempting to reduce the self-interaction error have been
proposed [29–41], someofwhich, however, severely deterio-
rate the thermochemistry [3,34,40,41].

Universal alleviation of the delocalization error requires
an explicit treatment of the fractional electron, which is
missing in almost all the mainstream DFAs. Recently,
several schemes have been proposed to deal with the
fractional electron [42–44]. Zheng et al. have developed
a nonempirical scaling correction (SC) scheme to retrieve
the PPLB condition for systems with a fractional N [45].
For instance, the SC to the LDA energy functional is

ΔESC-LDA ¼ 1

2

ZZ
drdr0

½ρðrÞ − gðrÞ�jϕfðr0Þj2
jr − r0j

−
1

3
Cx

Z
dr½ρðrÞ − gðrÞ�jϕfðrÞj2=3: ð1Þ

Here, Cx ¼ 3
4
ð6=πÞ1=3, gðrÞ ¼ R

dr0ρsðr; r0Þρsðr0; rÞ, with
ρsðr; r0Þ being the Kohn-Sham reduced density matrix, and
ρðrÞ ¼ ρsðr; rÞ is the electron density. The key quantity is
ρðrÞ − gðrÞ ¼ ðn − n2ÞjϕfðrÞj2, where n is the number of
fractional electrons in the total system, and ϕfðrÞ is the
fractionally occupied orbital. The two terms on the right-
hand side of Eq. (1) linearize the Hartree energy and the
exchange energy at n ∈ ½0; 1�, respectively. The inclusion
of ΔESC-LDA significantly improves the LDA predicted
derivative band gaps for finite systems [45].
Despite the progress, the SC scheme has an obvious

limitation—it fails to capture the fractional electron
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distributions in integer-N systems. Consequently, it gives
zero correction to the electron density or the energy of any
real physical system. For instance, It is well known that
LDA and GGAs greatly underestimate the total energy of a
dissociated Hþ

2 with half an electron on each proton,
because of the severe delocalization error [2]. The SC of
Eq. (1) gives ΔESC-LDA ¼ 0, since the whole Hþ

2 molecule
has one integer electron.
To overcome such a limitation, in this Letter we propose

a local scaling correction (LSC) scheme. The basic idea is
to impose the PPLB condition to local pieces of a system.
For a dissociated Hþ

2 , if we could impose the PPLB
condition locally to the half electron on each proton and
sum up the corrections, we would correct the total energy of
the dissociated Hþ

2 .
One of the main challenges of LSC is how to extract

the local distribution of the half electron from ρsðr; r0Þ of a
stretched Hþ

2 . In an atomic basis representation, ρðrÞ ¼
χTðrÞPχ ðrÞ and gðrÞ ¼ χTðrÞPSPχ ðrÞ, where χ ðrÞ is the
vector of basis functions fχiðrÞg, and P is the Kohn-Sham
reduced density matrix. Define ~P ¼ S1=2PS1=2, where

S ¼
h SA 0
0 SB

i
is the basis overlap matrix, with A and

B denoting the two protons (the off-diagonal matrix blocks
are 0 in the dissociation limit). For integer-N systems, the
eigenvalues of ~P are either 1 or 0, and thus ð ~PÞ2 ¼ ~P
and ρðrÞ − gðrÞ ¼ 0.
To capture the half electron, we replace S by an

r-dependent screened overlap matrix SvðrÞ with

Sv;ijðrÞ ¼
Z

dr0χiðr0Þvðjr − r0jÞχjðr0Þ; ð2Þ

and ~P by ~PvðrÞ ¼ S1=2v PS1=2v . In Eq. (2), vðrÞ ¼ 1 at r < R0

(R0 is a certain length), while it decays quickly to 0 at
r > R0. At the position of proton A (rA) or B (rB), we have

SvðrAÞ ¼
hSA 0
0 0

i
or SvðrBÞ ¼

h 0 0
0 SB

i
. The eigenval-

ues of ~PvðrAÞ and ~PvðrBÞ are f1
2
; 0;…; 0g. Here, the

fractional eigenvalue 1
2
conveys the key information that

each proton carries half an electron.
For general many-electron systems, the same SvðrÞ and

~PvðrÞ can be defined. The eigenvalues of ~PvðrÞ are 1, 0, or
a fractional number nfðrÞ. We can thus extract nfðrÞ by

evaluating ~Pv − ð ~PvÞm. All the integer eigenvalues cancel
exactly, while nfðrÞ − nfðrÞm ≈ nfðrÞ provided that a large
enough m is chosen [we take m ¼ 10 for nfðrÞ ∼ 0.5].
Besides the local fractional occupation number nfðrÞ, its

density distribution lðrÞ is also needed. Define

gvmðrÞ ¼
Z

dr1dr2 � � �drmρsðr; r1Þvðjr − r1jÞρsðr1; r2Þ

× vðjr − r2jÞ � � � vðjr − rmjÞρsðrm; rÞ: ð3Þ

lðrÞ ¼ ρðrÞ − lim
m→∞

gvm−1ðrÞ

¼ lim
m→∞

χTðrÞS−1=2v ½ ~Pv − ð ~PvÞm�S−1=2v χ ðrÞ: ð4Þ

We may formally write lðrÞ≡ nfðrÞdðrÞ, with dðrÞ being
the orbital density of the local fractional electron, as it plays
an analogous role to jϕfðrÞj2 in Eq. (1).
Consider also ~QvðrÞ ¼ I − ~PvðrÞ with I being the

identity matrix. The eigenvalues of ~Qv are complements
to those of ~Pv. Define similarly

~lðrÞ ¼ lim
m→∞

χTðrÞS−1=2v ½ ~Qv − ð ~QvÞm�S−1=2v χ ðrÞ: ð5Þ

The formal analogy between Eqs. (4) and (5) suggests that
~lðrÞ ¼ ½1 − nfðrÞ�dðrÞ, and hence dðrÞ ¼ lðrÞ þ ~lðrÞ.
Figure 1 depicts nfðrÞ and dðrÞ versus the internuclear

distance R of an Hþ
2 molecule. At a small R (say, R ¼ 1 Å),

dðrÞ is rather small and nfðrÞ ¼ lðrÞ=dðrÞ ≈ 0.9 at r near
the nuclei. This indicates that there is a rather small amount
of local fractional electron in a compact Hþ

2 , and hence
the scaling correction to the total energy should be small.
In contrast, at R ≥ 5 Å, dðrÞ exhibits two separated peaks
with each at a proton site, and nfðrÞ ≈ 0.5 at the nuclear
positions. The functions nfðrÞ and dðrÞ thus reveal that
each proton carries half an electron.
The remaining challenge is to construct a correction

energy functional using lðrÞ and dðrÞ as basic variables.
By making an analogy to Eq. (1), we design the following
form of LSC (spin index is suppressed, and r ¼ jr − r0j):

ΔELSC-LDA ¼ 1

2

ZZ
drdr0

lðrÞuðμ0rÞ½dðr0Þ − lðr0Þ�
r

−
1

2

ZZ
drdr0

lðrÞ½1 − uðμ0rÞ�lðr0Þ
r

− Cx

Z
drflðrÞ½dðrÞ�1=3 − ½lðrÞ�4=3g: ð6Þ
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FIG. 1 (color online). (a) The local fractional occupation
number nfðrÞ and (b) the local fractional orbital density dðrÞ
of a dissociating Hþ

2 along the bonding axis at various inter-
nuclear distances R. A proton locates at x ¼ 0, while the other
proton resides at x ¼ R.
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Here, the first and third terms on the right-hand side
linearize the classical Coulomb and exchange energy
densities at every r, respectively. To achieve a truly local
correction, a short-range kernel uðμ0rÞ is introduced in
the first term, with μ0 being a range parameter. It limits the
range of integration, so that only when r and r0 are near the
same nucleus, does the integrand contribute nontrivially to
the energy. In practice, we adopt a Fermi-type form for
uðμ0rÞ [46], which gives a smooth spatial cutoff at a certain
length. For simplicity, we set the cutoff length of uðμ0rÞ to
be the same as vðrÞ. The second term is to eliminate the
unwanted long-range Coulomb repulsion between the two
half-electrons at a large R, which is essential to attain the
correct asymptotic behavior for the total energy as R → ∞.
The LSC to DFAs other than LDA can be designed simi-

larly. In this Letter we simply use ΔELSC-GGA≈ΔELSC-LDA

for GGAs, and ΔELSC-B3LYP≈ð1−a0ÞΔELSC-LDA for the
hybrid functional B3LYP, with a0 ¼ 0.2 being the weight
of HF exchange.
Figure 2(a) depicts the energy of Hþ

2 versus R calculated
by various DFAs. Compared with the exact HF curve,
LDA, BLYP [5,47], and B3LYP drastically underestimate
the energies at large R. DFAs containing long-range HF
exchange such as LC-BLYP [17], LC-ωPBE [48], ωB97
[26], and CAM-B3LYP [22] give improved energies, but
the energies still deviate significantly from the exact curve
at R > 3 Å. In contrast, LSC-DFAs yield energies very
close to the exact curve at large R, which clearly affirms the
validity of the LSC. Substantial improvement of energy by
the LSC is also seen in Fig. 2(b), where the dissociation of
Heþ2 is examined.
The LSC gives almost no energy correction at small R,

such as at the equilibrium bond length of Hþ
2 (R ≈ 1 Å).

This is because nfðrÞ ≈ 1 (see Fig. 1) and lðrÞ ≈ dðrÞ. Note

that nfðrÞ is slightly off the integer value 1 at r near the
nuclei. This is because SvðrÞ differs slightly from S with a
small cutoff length (R0 ¼ 1 Å) chosen for vðrÞ.
We now consider general polyatomic systems. To have a

universally applicable LSC, Eq. (6) needs to be modified.
This is because (i) the long-range Coulomb term
(the second term) will diverge in extensive systems such
as in solids, (ii) the screening distance R0 for vðrÞ should
be atom specific, and (iii) the computation of SvðrÞ and
ΔELSC-DFA is rather expensive with Eqs. (2) and (6).
To resolve the above issues, we make the following

change to Eq. (6). (i) We replace the long-range kernel
1 − uðμ0rÞ in the second term by a midrange kernel
wðrÞ ¼ uðμ1rÞ − uðμ2rÞ, to avoid possible divergence of
energy. (ii) We adopt the approximation

SvðrÞ ≈ S1=2VðrÞS1=2; ð7Þ
with VijðrÞ¼ δijð1þeβ½jr−rij−R0ðrÞ�Þ−1. Here, ri is the center
of ith atomic basis, β ¼ 4.0 bohr−1, and R0ðrÞ ¼ R0i at r
close to ri, with R0i being an atom-specific radius [46].
(iii) We expand the kernels uðμ0rÞ and wðrÞ by error
functions and polynomial Gaussians, and use a resolution
of the identity technique [52,53] to simplify the compu-
tation of the double integrals. All the parameters involved
in the LSC, including the range parameters fμ0; μ1; μ2g and
the atom-specific screening radii fR0ig, are determined
by minimizing the mean absolute error of the G2-1 set [54]
of thermochemical data [46,55–57] non-self-consistently
using orbitals of the parent DFAs. These parameters are
then fixed for all other systems.
For a many-electron system with a compact geometry,

the screening of core electrons by SvðrÞ may lead to an
artificial local fractional electron, making nfðrÞ < 1 near
the nuclei. This inevitably causes some minor overcorrec-
tion to the energy. As shown in Table I, compared with the
parent DFAs, the LSC-DFAs largely preserve yet slightly
compromise (due to the minor over-correction) the accu-
racy of thermochemical properties for molecules at equi-
librium structures. In contrast, transition-state species
involve partially formed or dissociated chemical bonds,
and the existing local fractional electron distributions are
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FIG. 2 (color online). Dissociation energy curves of (a) Hþ
2 and

(b) Heþ2 . The total energy of isolated H and Hþ (He and Heþ) is
set to zero energy. SvðrÞ andΔELSC-LDA are calculated by Eqs. (2)
and (6), respectively. For numerical convenience, both vðrÞ and
uðμ0rÞ are expanded by polynomial Gaussians [46], and their
cutoff lengths are chosen to be around 1 Å. For Heþ2 the coupled-
cluster method with single, double, and noniterative triple
excitation [CCSD(T)] [49–51] is taken as reference.

TABLE I. Performance of LSC-BLYP and LSC-B3LYP on
thermochemical properties and reaction barriers. The HTBH38/
08 and NHTBH38/08 test sets contain 38 hydrogen and non-
hydrogen transfer reaction barrier heights [58,59], respectively.
See the Supplemental Material [46] for more details.

Mean absolute error (kcal/mol)

Test set BLYP LSC-BLYP B3LYP LSC-B3LYP

HTBH38/08 7.83 4.85 4.43 2.71
NHTBH38/08 8.79 4.38 4.44 2.93
G2-97 7.28 7.41 3.40 4.51
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well captured by the LSC. As seen from Table I, the LSC
indeed significantly improves the prediction of hydrogen
and nonhydrogen transfer reaction barrier heights.
The LSC is within the generalized Kohn-Sham scheme

[60], since its form depends explicitly on ρsðr; r0Þ. The
corresponding correction to the Kohn-Sham Hamiltonian
matrix ΔHLSC

ij ¼ ∂ΔELSC=∂Pij can be evaluated readily
[46]. Therefore, all the LSC-DFA results reported below
were obtained with self-consistent field calculations.
With the corrected Kohn-Sham Hamiltonian, the LSC is

capable of correcting the wrong electron density resulting
from the delocalization error. This is exemplified by the
dissociation of a LiF molecule as shown in Fig. 3. The
CCSD(T) method predicts that the Mulliken charge q on Li
undergoes an abrupt jump from þ1 to 0 at R ¼ 7.4 Å,
where the two energy surfaces corresponding to the ionic
and neutral dissociation products intersect with each other.
It is known that BLYP and B3LYP yield rather smooth
qðLiÞ versus R curve [41,61] because the delocalization
error leads to the wrong electron density with fractional
electron localized on each nucleus. With the LSC, the sharp
transition in qðLiÞ is recovered, and the energy at large R is
also substantially corrected. This example clearly demon-
strates the advantage of LSC in treating charge-transfer
systems.
Thevalidity of theLSC is independent of system size. This

is because by construction the overall correction is the sumof
all local contributions (integration over r). Therefore, LSC-
DFAs are potentially useful for the studies of large complex
systems. For instance, in a DFT-based molecular dynamics
study of a water-solvated OH radical (OH·), the OH· is pre-
dicted to carry a negative charge of −0.2 by BLYP [62,63].
This is known to be an artifact caused by the delocalization
error.We performed calculations on the clustersOH · ðH2OÞn
ðn ¼ 1;…; 15Þ with various DFAs. As shown in Fig. 4,
while the BLYP predicts that qðOH·Þ approaches to −0.2

as n increases, some hybrid or range-separated DFAs reduce
qðOH·Þ to about −0.1. In contrast, with the LSC-BLYP
the unphysical negative charge on OH· becomes negligibly
small. Moreover, GGAs incorrectly predict a hemibonding
geometry to be the energy minimum of OH · H2O [62,64],
while LSC-GGAs correctly predict a hydrogen-bonding
structure to be energetically more favorable [65].
To conclude, the proposed LSC scheme offers an effec-

tive and general approach for reducing the delocalization
error of mainstream DFAs. It significantly improves the
characterization of dissociating molecules, transition-state
species, and charge-transfer systems within the framework
of DFT. For systems with compact geometries, the present
form of the LSC may lead to minor overcorrection.
It is known that range-separated DFAs yield accurate

reaction barriers [3,22,26,48,66], and some long-range
corrected DFAs such as LC-BLYP and ωB97 can properly
dissociate a LiF molecule [46]. This is because the locali-
zation error associated with the long-range HF exchange
cancels partly the delocalization error of the LDA or GGA
exchange. However, a complete cancellation of errors is
generally not guaranteed; see Figs. 2 and 4. Moreover,
the optimal range-separation form can be rather system
dependent [18,19,23,67]. In contrast, the LSC is based on
a conceptually different strategy—it aims at a universal
elimination of delocalization error by imposing the PPLB
condition locally at every r-point.
The LSC proposed in this Letter is much beyond the

previously developed global SC scheme [45], as it is
capable of correcting both the energy and the electron
density of realistic physical systems. Therefore, it presents
an important step forward along the direction of under-
standing and correcting the intrinsic errors of DFAs [2,3].
In addition, the present form of the LSC is expected to give
nonzero corrections to periodic systems, and thus it would
be interesting to study how the LSC affects the properties
of solids and interfacial systems.
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FIG. 3 (color online). Dissociation energy curves of a LiF
molecule. The sum of energies of a neutral Li atom and a neutral
F atom is set to zero energy. The inset shows the Mulliken charge
on Li as a function of internuclear distance R.
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