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We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input
from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that
pionless EFT is the appropriate theory to describe the light nuclei obtained in LQCD simulations carried out
at pion masses heavier than the physical pion mass. We solve the EFT using the effective-interaction
hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-
order EFT parameters to the deuteron, dineutron, and triton LQCD energies at mπ ≈ 800 MeV, we
reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and mass-6
ground states.

DOI: 10.1103/PhysRevLett.114.052501 PACS numbers: 21.45.-v, 12.38.Gc, 21.30.-x

Introduction.—Understanding the low-energy dynamics
of quantum chromodynamics (QCD), which underlies the
structure of nuclei, is a longstanding challenge posed by its
nonperturbative nature. After many years of development,
lattice QCD (LQCD) simulations are fulfilling their prom-
ise of calculating static and dynamical quantities with
controlled approximations. Progress has reached the point
where meson and single-baryon properties can be predicted
quite accurately, see for example Ref. [1]. Following the
pioneering studies in quenched [2] and fully dynamical [3]
LQCD, a substantial effort is now in progress to study light
nuclei [4–7]. Multinucleon systems are significantly more
difficult to calculate than single-baryon states, as they are
more complex, demand larger lattice volumes, and better
accuracy to account for the fine-tuning of the nuclear force.
At heavier light-quark masses, the formation of quark-
antiquark pairs is suppressed, the computational resources
required to generate LQCD configurations are reduced, and
the signal-to-noise ratio in multinucleon correlation func-
tion improves [7]. Therefore, present multinucleon LQCD
simulations are performed at heavy up and down quark
masses, which result in unphysical values for hadronic
quantities. Once lattice artifacts are accounted for using
large enough volumes and extrapolating to the continuum,
LQCD results depend on a single parameter, the pion mass
mπ . However, sufficiently large volumes are harder to
achieve as the number of nucleons increases due to the
saturation of the nuclear forces.
A hadronic effective field theory (EFT) that incorporates

chiral symmetry (chiral EFT) provides a tool to extrapolate
LQCD results to a smaller, more realistic pion mass [3,8].
Here we show how EFTs, combined with ab initiomethods
for the solution of the Schrödinger equation, provide a way

to extend LQCD results also to the larger distances
involved in nuclei with several nucleons. Of course, solving
the nuclear many-body problem is not a small challenge,
yet it is considerably simpler than solving QCD on the
lattice.
We devise an EFT for existing lattice nuclei, that is,

nuclei composed of neutrons and protons living in a world
where mπ is much larger than the physical pion mass. Pion
effects can be considered short-ranged, and the appropriate
theory is pionless EFT (πEFT), an EFT based on the most
general dynamics among nucleons which is consistent with
the symmetries of QCD. (For a review, see, e.g., Ref. [9]).
We solve this EFT in leading order (LO) using the effective-
interaction hyperspherical harmonics (EIHH) method [10]
for systems with A ≤ 6 nucleons, and the auxiliary-field
diffusion Monte Carlo (AFDMC) method [11,12] for
A ≥ 4. Binding energies of nuclei with A ≤ 3 are used
as input. The energy of the A ¼ 4 ground state provides a
consistency check between both ab initio methods, and
between them and LQCD. Binding energies for A ≥ 5 are
predictions that extend LQCD into new territory. In order to
evaluate the feasibility of our approach, we present here the
first analysis of the problem using recent multinucleon
LQCD results at mπ ¼ 805 MeV from the NPLQCD
collaboration [6]. Table I summarizes nucleon and light
nuclear data in nature and in the LQCD world, including
our results.
The modern approach to nuclear physics deploys ab ini-

tio methods such as the EIHH and ADFMC methods in the
solution of chiral EFT with coupling constants tuned to
experimental few-body data. Since the latter are replaced
here by LQCD data, our approach illustrates how even-
tually one will be able to derive the structure of real nuclei

PRL 114, 052501 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 FEBRUARY 2015

0031-9007=15=114(5)=052501(5) 052501-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.052501
http://dx.doi.org/10.1103/PhysRevLett.114.052501
http://dx.doi.org/10.1103/PhysRevLett.114.052501
http://dx.doi.org/10.1103/PhysRevLett.114.052501


directly from QCD. Our method can be extended straight-
forwardly to hypernuclei.
Effective field theory.—Identification of the relevant

energy scales and selection of the appropriate degrees of
freedom are essential for a successful application of EFT to
a physical problem. In Table II we present the relevant
energy scales for natural nuclear physics and for lattice
nuclei, as inferred from Table I.
In nature, nuclear physics comprises several scales. The

higher scale is the QCD scale MQCD ∼mN ∼ 1 GeV that
characterizes the nucleon mass mN , most other hadron
masses, and the chiral-symmetry-breaking scale. The sec-
ond and third scales are given by the energies of the lightest
nucleon excitation and meson, respectively, MΔ ∼mΔ −
mN ∼ 300 MeV associated with the Delta-nucleon mass
difference and Mπ ∼mπ ∼ 140 MeV. Both these scales are
numerically not very different from the pion decay constant
and the Fermi momentum in heavy nuclei. Another energy
scale, which we call the one-pion-exchange scale, emerges
when the inverse pion Compton wavelength is combined
with the QCD mass scale,Mope ∼m2

π=mN ∼ 20 MeV. This
is also the characteristic magnitude of the nuclear binding
energy per nucleon, Mnuc ∼ B=A.
For lattice nuclei these scales can be different. We

observe that the approximate degeneracy between Mope

and Mnuc, so important in nature, is removed and a clear
separation develops between Mnuc and the other scales.
Barring a dramatic, unforeseen relative decrease in the mass
of another nucleon excitation or meson, nucleons are
expected to be the only relevant degrees of freedom for
low-energy lattice nuclei. An EFT involving the most
general dynamics of only the nonrelativistic four-
component nucleon field (two spin and two isospin states),
without any mesons, is the appropriate theory for these
systems. For a process with external momenta Q ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mNMnuc
p

it produces the same S matrix as QCD, but in
an expansion in Q=M, where M is the typical scale of
higher-energy effects. The resulting theory coincides with
πEFT for natural nucleons [9], except for different values of
parameters and scales. While in nature

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mNMnuc
p

∼
100 MeV and M ∼Mπ, for mπ ∼ 800 MeV the numbers
in Table II suggest instead

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mNMnuc
p

∼ 200 MeV and
M ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MQCDMΔ
p ≃ 500 MeV (cf. Ref. [13]).

The Hamiltonian.—The EFT Lagrangian contains all
possible terms compatible with QCD symmetries and
ordered by the number of derivatives and nucleon fields.
The corresponding Hamiltonian is naturally formulated in
momentum space, where the potential takes the form of
a momentum expansion that must be regulated in high
momentum. Dependence only on transferred momenta
leads to local interactions, while more general momentum
dependence yields nonlocal interactions as well.
Because of the Pauli principle we need to consider only

antisymmetric multinucleon states. Restricting the
Lagrangian to this subspace we are free to choose a subset
of the terms in the EFT Lagrangian without loss of
generality. As in Ref. [14], here we aim at formulating a
local EFT nuclear potential that will allow us to study
the many-body problem utilizing techniques, such as the
AFDMC method [11,12], that are restricted to local
interactions. In order not to introduce nonlocal terms in
the regularization, we assume a regulator function of
Gaussian form fΛðqÞ ¼ expð−q2=Λ2Þ in terms of
the momentum transfer q and a regulator parameter (or
cutoff) Λ.
For this regulator the coordinate-space Hamiltonian

takes the form

H ¼ −
X

i

∇2
i

2mN
þ
X

i<j

ðC1 þ C2σi · σjÞe−Λ
2r2ij=4

þ
X

i<j<k

X

cyc

D1ðτi · τjÞe−Λ
2ðr2ikþr2jkÞ=4 þ � � � ; ð1Þ

where
P

cyc stands for the cyclic permutation of a particle
triplet ðijkÞ, and “…” for terms containing more derivatives
and/or more-body forces. The expansion coefficients
C1;2ðmπ;ΛÞ; D1ðmπ;ΛÞ;…, commonly called low-energy
constants (LECs), are unknown parameters that encompass
physics at the scaleM and above, and thus change withmπ .

TABLE I. Available experimental and LQCD data at various
values of the pion mass [MeV], and our results: the neutron and
proton masses and binding energies of the lightest nuclei [MeV].
Fitted values are marked with *. Error estimates are discussed in
the text.

mπ 140 510 805 805
Nucleus (Nature) (Ref. [5]) (Ref. [6]) (This work)

n 939.6 1320.0 1634.0 1634.0
p 938.3 1320.0 1634.0 1634.0
nn � � � 7.4� 1.4 15.9� 3.8 15.9� 3.8*
D 2.224 11.5� 1.3 19.5� 4.8 19.5� 4.8*
3n � � � � � �
3H 8.482 20.3� 4.5 53.9� 10.7 53.9� 10.7*
3He 7.718 20.3� 4.5 53.9� 10.7 53.9� 10.7
4He 28.30 43.0� 14.4 107.0� 24.2 89� 36
5He 27.50 98� 39
5Li 26.61 98� 39
6Li 32.00 122� 50

TABLE II. Variation of the nuclear energy scales with the
pion mass.

Scale mπ ∼ 140 MeV mπ ∼ 500 MeV mπ ∼ 800 MeV

MQCD 1000 MeV 1300 MeV 1600 MeV
MΔ 300 MeV 300 MeV 180 MeV
Mπ 140 MeV 500 MeV 800 MeV
Mope 20 MeV 200 MeV 400 MeV
Mnuc 10 MeV 15 MeV 25 MeV
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They depend on the arbitrary cutoff Λ in such a way that
low-energy observables are (nearly) cutoff independent,
and they should be fitted through comparison between the
EFT and the available data.
Naive scaling arguments suggest that the LECs should

scale as 1=M1þdþ3
2
ðn−4Þ, where d is the number of deriv-

atives and n is the number of nucleon fields [15]. However,
the existence of shallow S-wave two-body bound states at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mNMnuc
p

≪ M requires enhancements in operators that
connect S waves. The LO two-body operators are those
without derivatives [16]. While a surprising enhancement
in the nonderivative three-body interaction promotes it to
LO [17], the same is thought not to happen for four-body
forces [18]. More-body forces require derivatives and are
expected to be further suppressed. To match current lattice
calculations we can neglect isospin violation. For the first
attempts at a description of real light nuclei with the leading
interactions, see Ref. [19]. The mπ dependence of two- and
three-nucleon observables in πEFT has been studied
with input from chiral EFT in Ref. [20]. The quark mass
dependence of the triple-α process was estimated in
Ref. [21].
Some comments are in order about the EFT truncation.

Expanding the regulator around q ¼ 0, we see that it
introduces terms of O(ðQ=ΛÞ2). Moreover, the regulator
does not commute with the permutation operator, which
gives rise to more general momentum dependence of the
same order. These terms can be lumped with higher-order
interactions in the “…” of Eq. (1) without increasing the
expected truncation error, OðQ=MÞ, because we consider
here Λ≳M. A conservative estimate of the truncation error
is about 40%. However, we note that in the application of
πEFT to the physical 4He nucleus an accuracy of 10%–20%
is achieved [18,19], even though a naive estimate suggests a
50% uncertainty.
Input data.—The online publication of the NPLQCD

data for the spectrum of the A ≤ 4 nuclei last year [6]
provided the motivation for the current work. The measured
lattice binding energies of the deuteron, dineutron, and
triton, together with that of the alpha particle, provided us
with the three data points to which we fit our LO LECs,
plus one data point to validate it. In the meanwhile new
lattice results have appeared. Unquenched calculations of
light nuclear binding energies at mπ ¼ 510 MeV were
reported [5], and also the two-nucleon (NN) scattering
lengths and effective ranges at mπ ¼ 805 MeV [7]. We
assume here that the interaction has range ∼1=mπ and
comparable effective ranges, but much larger scattering
lengths. Since the reported effective ranges are smaller than
the scattering lengths, our expansion should converge,
albeit at a slow rate. Note, however, that the data from
Ref. [7] indicate an almost degenerate double bound state
pole in the NN T matrix, which is thought to be incom-
patible with a short-range nonrelativistic potential [22].
Worse still, Ref. [4] finds no NN bound states in a large

range of pion masses that includes the values in Table I.
Until the dust settles, we concentrate on the LQCD data in
Table I formπ ¼ 805 MeV, as a first check of our proposed
approach.
Calibration and predictions.—For the calibration of the

NN LECs we turn to the spin-isospin (S, T) basis and define
the channel constants CS;T ≡ C1 þ ½2SðSþ 1Þ − 3�C2. We
solve the two-body Schrödinger equation using the
Numerov method, and fit CS;T to the deuteron (S ¼ 1,
T ¼ 0) and dineutron (S ¼ 0, T ¼ 1) binding energies. To
calibrate the LEC D1 using the 3H binding energy B3, we
solve the three-body Schrödinger equation with the EIHH
method, where we expand the wave function into a set of
antisymmetrized hyperspherical-harmonics spin-isospin
states. Convergence is controlled by the hyperangular
quantum number Kmax, results being obtained by extrapo-
lation to the limit Kmax → ∞ [10]. The corresponding error
in our results is estimated to be smaller (for the lighter
systems, much smaller) than the EFT truncation error.
The LECs fitted to the central values of the lattice results

are presented in Table III. The cutoff dependence of the NN
LECs CS;T is qualitatively similar to other regulators [16].
We see no limit-cycle behavior [17] inD1, possibly because
our cutoff values are not large enough to probe the second
branch of the periodic function.
A simple check of πEFT at LO, which is equivalent to

the large-scattering-length approximation to the two-body
problem, is that for large cutoffs the S ¼ 1, T ¼ 0 scatter-
ing length is related to deuteron binding energy B31 by
a31 ≈ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mNB31

p
[16]. This relation suggests that a31

should approach 1.12 fm for the lattice deuteron. For
our Gaussian cutoff we find a31 ¼ ð1.2� 0.5Þ fm, where
we use the wide range of cutoff variation 2–14 fm−1 to
estimate the EFT error. With a sharper cutoff function
fΛðqÞ → expð−q4=Λ4Þ there is quicker convergence to the
expected number, a31 ¼ ð1.1� 0.1Þ fm in the same cutoff
range.
With LECs fixed, we now have a complete LO potential

that can be used to predict other properties of lattice nuclei.
As a first step in this direction we shall estimate the binding
energies BA for A ¼ 4, 5, 6. To solve the Schrödinger
equation for these systems we use, in addition to the EIHH
method, the AFDMC method also. In the latter technique
[11,12], the ground-state energies are projected from an

TABLE III. The LO LECs [GeV] for lattice nuclei at
mπ ¼ 805 MeV, as a function of the momentum cutoff Λ [fm−1].

Λ C1;0 C0;1 D1

2 −0.1480 −0.1382 −0.07515
4 −0.4046 −0.3885 −0.3902
6 −0.7892 −0.7668 −1.147
8 −1.302 −1.273 −2.648
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arbitrary initial state by means of a stochastic imaginary-
time propagation. The numerical complexity related to the
presence of operatorial terms in the interaction is reduced
by using the Hubbard-Stratonovich transformation, at the
price of introducing auxiliary fields as additional degrees of
freedom.
In properly renormalized EFT, observables should be

asymptotically invariant to the value of Λ. In practice, this
goal is hard to achieve because in heavier systems our
cutoff range is limited and variation of calculated proper-
ties tends to be smaller than the expected EFT truncation
error. Therefore, we aim for a more modest goal, that
observables depend only weakly on the cutoff. In Fig. 1
we present the calculated binding energy of 4He, B4, as a
function of Λ. Over a wide cutoff range the EFT prediction
reproduces the LQCD result within the measurement
error, evidence that the EFT in LO captures the essence
of the strong-interaction dynamics, and that 40% is an
overestimate of the EFT truncation error. Our results are
not cutoff invariant; however, the cutoff dependence is
rather moderate: B4 changes by 20% when Λ grows by a
factor of 4.
In Fig. 2 we present the correlation between 3He and 4He

binding energies. When we allow D1 to vary at fixed CS;T ,
LO EFT gives a line [18], which corresponds to the
phenomenological Tjon line [23]. One can see how the
measurement error in B3 is propagated into an error in
the predicted B4 value. Using this figure alone one would
conclude that the EFT error estimate for B4 is about
�27 MeV, very close to the measurement error. Our
estimate of a 40% error in the LO EFT is likely very
conservative. Our reproduction of the LQCD central value
and error estimate for B4 indicates consistency of the
LQCD values [6] for the A ¼ 2, 3, 4 systems.

The power of the EFT formulated above is the relative
ease with which it can be extended to different few- and
many-body systems. UsingΛ ¼ 2 fm−1 we have looked for
excited states in A ¼ 2, 3, 4 systems, but much to our
surprise found none. Similarly, we have found no evidence
for 3n droplets, for which our ground-state binding energy
coincides with the two-body threshold. Results for the
A ¼ 5, 6 ground states at Λ ¼ 2 fm−1 are shown in Table I,
with errors estimated from the EFT truncation.
For 5He we found a bound state with binding energy

B5 ¼ 98.2 MeV, which reflects a 9MeV binding relative to
4He at the same cutoff. However, examining the evolution
of B5 with the cutoff we found that for Λ ¼ 4 fm−1 the five-
body ground-state energy coincides with the four-body
threshold. This suggests that the A ¼ 5 nuclear gap found
in nature persists for larger quark masses.
We have also calculated the 6Li ground state for

Λ ¼ 2 fm−1, obtaining B6 ≈ 122 MeV. In this case the
error in Kmax extrapolation is about 3 MeV, which is
somewhat larger than for lighter systems but still small
compared with input and truncation errors. Thus
B6=A ≈ 20 MeV, similar to lattice 4He. We conjecture that
nuclear saturation survives the increase in pion mass, but
this conclusion remains to be confirmed by larger
calculations.
Conclusion.—One of the main challenges of current

research in nuclear physics is to provide a unified look at
the nuclear regime, from QCD to heavy nuclei. Using
results from recent lattice QCD simulations of few-nucleon
systems, we took important steps in this direction by
demonstrating the consistency of πEFT and LQCD for
mπ ≈ 800 MeV. Our results suggest that some of the
defining properties of nuclei might be relatively insensitive
to the value of the pion mass. More LQCD data are needed

FIG. 1 (color online). 4He binding energy B4 [MeV] as a
function of the momentum cutoff Λ [ fm−1]. The (magenta)
horizontal line and the (pink) band give the LQCD central value
and error. The (black and blue) solid lines are (respectively, the
EIHH and AFMDC methods) LO EFT results.

FIG. 2 (color online). Correlation between the 4He and 3He
binding energies, B4 [MeV] and B3 [MeV]. Horizontal and
vertical lines and bands represent LQCD results. The (blue) solid
line is the Tjon line in LO EFT from the EIHH method at
Λ ¼ 2 fm−1.
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in order to go beyond LO EFT and assess the systematic
uncertainty of the EFT approach, while more extensive
calculations with the EFT should settle the issue of the
importance of quark masses to nuclear properties, with
implications for the analysis of fundamental constant
variability [24].
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