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The Adler function D is found exactly in supersymmetric QCD. Our exact formula relates DðQ2Þ to the
anomalous dimension of the matter superfields γ(αsðQ2Þ). En routewe prove another theorem: the absence
of the so-called singlet contribution to D. While such singlet contributions are present in individual
supergraphs, they cancel in the sum.
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Formulation of the problem and results.—The celebrated
ratio

R ¼ σðeþe− → hadronsÞ=σðeþe− → μþμ−Þ

plays a special role in QCD-based phenomenology. For
instance, it can be used for a precise determination of the
gauge coupling αs from accurate data on eþe− → hadrons
in an appropriate energy range. It is also one of the key
objects in various theoretical analyses in QCD, both in
perturbation theory and beyond. In perturbation theory the
ratio R is defined as a normalized cross section

σðeþe− → quarksþ gluons → hadronsÞ:

It is directly reducible to the imaginary part of the photon
polarization operator Π [see (4)],

RQCD ¼ 12πImΠQCD: ð1Þ

Alternatively, one can define RQCD through a certain
analytic continuation (see, e.g., [1]) of the Adler function
[2],

DðQ2Þ≡ −12π2ðQ2d=dQ2ÞΠðQ2Þ: ð2Þ

In QCD the Adler function and the ratio R are calculated [3]
up to Oðα4sÞ. Supersymmetric QCD (SQCD) is only a
cousin of QCD since there is still no indication of the
existence of supersymmetry in our world. Nevertheless,
SQCD is known to be a unique theoretical laboratory in
many aspects of gauge dynamics. The OðαsÞ correction to
R in SQCD was calculated in [4].
In this Letter we will derive an exact relation between

DSQCD and the anomalous dimension γ of the matter
superfield(s), valid to all orders in αs,

DðQ2Þ ¼ 3

2
N
X
f

q2f½1 − γ(αsðQ2Þ)�; ð3Þ

where f is the flavor index, and qf is the corresponding
electric charge (in units of e). Equation (3) assumes that all
matter fields are in the fundamental representation of
SUðNÞ, although their electric charges can be different.
In calculating γ(αsðQ2Þ) one should remember that αsðQ2Þ
runs according to the Novikov-Vainshtein-Shifman-
Zakharov (NSVZ) β function [5,6]. Our derivation of
Eq. (3) refers to the renormalization group functions
defined in terms of the bare coupling constant and uses
the higher covariant derivative regularization [7].
From the practical side our result means, among other

things, that for this renormalization prescription Oðαns Þ
calculation of the Adler function DðQ2Þ in SQCD exactly
reduces to a much simpler Oðαn−1s Þ calculation of the
anomalous dimension γ.
The photon polarization operator ΠðQ2Þ is defined as

ΠμνðqÞ ¼ i
Z

d4xeiqxhTfjμðxÞjνð0Þgi

≡ ðqμqν − q2gμνÞΠðQ2Þ; ð4Þ

whereQ2 ¼ −q2 and jμ is the electric current. In the case of
QCD jμ ¼ P

fqfψ̄fγ
μψf. In the supersymmetric case it is

also necessary to take into account the quarks’ super-
partners, squarks.
ΠðQ2Þ consists of two parts. The so-called singlet part of

Π is determined by graphs with at least two matter loops,
with photons attached to different loops, and is proportional
to ðPfqfÞ2, see Fig. 1. In the nonsinglet part both external
photon lines are attached to one and the same matter loop;
therefore, the nonsinglet part is proportional to ðPfq

2
fÞ.

Correspondingly,
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DðαsÞ ¼
X
f

q2fD1ðαsÞ þ
�X

f

qf

�
2

D2ðαsÞ: ð5Þ

In deriving Eq. (3), en route we explicitly establish the
following theorem: it turns out that the singlet contribution,
symbolically depicted in Fig. 1, vanishes, D2 ≡ 0, once all
relevant supergraphs are summed. Only the nonsinglet part
D1 survives. (This theoremwas implicit in [8].)Hereafter,we
will focus exclusively on D1 keeping in mind that D2 ≡ 0.
A general derivation of the formula (3), relatingD and γ,

which is conceptually similar to the NSVZ β function [5], is
based on an examination of a certain “hybrid” β function in
SQCD, to be explained below, and parallels the Shifman-
Vainshtein nonrenormalization theorem [6].
When one deals with higher order corrections one must

be careful since higher-order terms in the perturbative
expansion are regularization and scheme dependent, gen-
erally speaking. Equation (3) implies supersymmetric
regularization as well as the renormalization scheme
necessary for the NSVZ β function. Both of the elements
were worked out in detail in [9] in the case of N ¼ 1
supersymmetric quantum electrodynamics (SQED). The
appropriate regularization is based on the higher derivative
method [7] supplemented by the Pauli-Villars regulariza-
tion for one-loop divergent (sub)diagrams [10].
Our general analysis of theAdler function is followed by a

direct supergraph calculation (in terms of the bare quantities)
and comparison ofDðQ2Þ and γwhich runs parallel to that in
[11]. This highly nontrivial calculation fully confirmsEq. (3)
—a considerable technical achievement in itself.
The model.—We will consider N ¼ 1 SQCD with N

colors and Nf flavors, assuming Nf > N þ 1. The latter
condition is needed in order to avoid nonperturbative
quantum deformations of the moduli space [12]. This will
allow us to work at the origin of the moduli space.
Each flavor is described by two chiral superfields Φi and

~Φi (i is the color index) in the fundamental (antifunda-
mental) representations of SUðNÞ, respectively.

S ¼ Sgauge þ Smatter

¼ 1

2g20
Re tr

Z
d4xd2θW2 þ 1

4e20
Re

Z
d4xd2θW2

þ
XNf

f¼1

1

4

Z
d4xd4θðΦþ

f e
2qfVþ2VΦf þ ~Φþ

f e
−2qfV−2Vt ~ΦfÞ:

ð6Þ

The gauge sector consists of the dynamical SUðNÞ part and
an auxiliary Uð1Þ part. The Uð1Þ gauge superfield V
(containing the photon field) is treated as an external field
and is present only in the external lines, as in Fig. 1. The
SUðNÞ and Uð1Þ gauge couplings are denoted by g and e,
respectively; the subscript 0 marks their bare (unrenormal-
ized) values, i.e., the values at the ultraviolet cutoff. The
Uð1Þ field strength tensor corresponding to V is W,

Wa ¼
1

4
D̄2DaV; Wa ≡ 1

8
D̄2ðe−2VDae2VÞ: ð7Þ

V is coupled to (s)quarks in the standard way, see the last
line in (6). Our notation is similar to that in [13]. Moreover,

Z
θ2d2θ ¼ 2;

Z
θ2θ̄2d4θ ¼ 4;

V ¼ VAtA; trðtAtBÞ ¼ δAB=2: ð8Þ

We will discuss the β function for α ¼ e2=4π, ignoring
all orders in the electromagnetic coupling higher than the
leading order, while all orders in αs ¼ g2=4π will be taken
into account. This β function (referred to above as hybrid)
is defined and parametrized as follows:

α−20 β ¼ −
d(α0ðM0Þ−1)
d logM0

≡ 1

π

�
bþ b1

α0s
π

þ b2

�
α0s
π

�
2

þ…

�
: ð9Þ

Here M0 is the ultraviolet cutoff. In differentiating with
respect to logM0 we keep the renormalized couplings αs
and the normalization point μ fixed. We will say that in this
case β is defined in terms of the bare coupling constant.
Alternatively, one can keep α0sðM0Þ fixed and differentiate
over log μ. Then we obtain β defined in terms of the
renormalized coupling constants. Generally speaking, these
are two distinct schemes. The difference between these
definitions is discussed in [9] in detail. Following [5,6], we
will use the former procedure.
In the leading order in αs

b ¼

8>><
>>:

2N
3
; one Dirac spinor

N
6
; one complex scalar

N; one supersymmetric flavor:

ð10Þ

Our task is to determine b1;2;….
β versus D and comments on derivation.—The β

function in (9) is obtained in a conventional way starting
from the two-point Green function of the superfield V.
Because of the Uð1Þ background gauge invariance it is
transversal,

FIG. 1. An example of the singlet contribution toD. The shaded
circles represent matter loops with all possible αs corrections.
Thin wavy lines denote the gauge superfield V while thick wavy
lines denote external photons.
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ΔΓð2Þ ¼ −
1

16π

Z
d4q
ð2πÞ4 d

4θVðθ;−qÞ∂2Π1=2Vðθ; qÞ

× (d−1ðα0; α0s;M0=QÞ − α−10 ); ð11Þ

where ∂2Π1=2 ¼ −DaD̄2Da=8 denotes the supersymmetric
transversal projection operator. In our notation

d−1ðα0; α0s;M0=QÞ − α−10 ¼ 4πΠðα0s;M0=QÞ: ð12Þ

Differentiating this equation with respect to logM0 and
taking into account that d−1 (as a function of the renor-
malized coupling constants) is independent of M0, we
obtain

α−20 β ¼ 4π
d

d logM0

Π(α0sðαs;M0=μÞ;M0=Q); ð13Þ

where the limit Q=M0 → 0 is assumed. Let us define the
function α0sðQÞ≡ α0sðαs;M0=QÞ by replacing μ → Q.
Then Eq. (13) can be rewritten as a relation between the
functions β and D:

α−20 β ¼ −4π
d

d logQ
Π(α0sðQÞ;M0=Q) ¼ 2

3π
Dðα0sÞ:

ð14Þ
Hence, the hybrid β and the Adler D functions coincide
modulo the overall normalization. In this way we arrive
at (3).
In the mid-1980s an exact relation for the NSVZ β

function in SQCD was obtained [5],

α−20s β ¼ −
1

2π

�
3N −

X
f

TðRfÞð1 − γfÞ
��

1 −
Nα0s
2π

�
−1
:

ð15Þ
Here γf’s are the anomalous dimensions of the matter
superfields in the representation Rf,

γ ¼ −
d logZ
d logM0

ð16Þ

and the coefficients TðRfÞ are related to the quadratic
Casimir operators CðRfÞ,

TðRÞ ¼ CðRÞ dimðRÞ
N2 − 1

: ð17Þ

A similar formula in SQED with one electron was obtained
in [8],

α−20 βSVZ ¼ 1

π
½1 − γðα0Þ�: ð18Þ

Superficially, Eqs. (18) and (3) have the same factors in the
square brackets; in fact, they are different: γðα0sÞ is
calculated in SQCD while γðα0Þ is calculated in SQED.

In all the above cases the arguments of [6,14] tell us that
only the first loop is “normal,” the Wilsonian β function is
exhausted by one loop. In other words, the coefficient
b ¼ N in (9), (10) is “normal,” while b1;2;… are due to the
matter operator in the effective action. Naively, it vanishes
by virtue of the equations of motion, but the Konishi
anomaly [15] converts it into the Uð1Þ gauge kinetic term,
and, therefore, all higher orders come from γ’s.
Verifying at order OðαsÞ.—One can easily verify the

match of the coefficient b1. To this end let us compare our
prediction (3) with the results of [4]

RSQCD ¼ 3

2
N
X
f

q2f

�
1þ N2 − 1

2N
αs
π
þOðα2sÞ

�
: ð19Þ

Using the fact that [14]

γðαsÞ ¼ −
N2 − 1

2N
αs
π
þOðα2sÞ; ð20Þ

and that in the first order in αs the Adler function D
coincides with R we reproduce (3) to order OðαsÞ. The first
coefficient in (20) is scheme independent and, therefore, is
the same for the renormalization group functions defined in
terms of the bare or renormalized coupling constant. In the
latter case the coefficient b1 is scheme independent while
b2;3;… will depend on the renormalization scheme.
Scheme dependence in higher orders.—In direct pertur-

bative derivation of Eq. (3) one should understand that all
coefficients starting from b2 are scheme dependent. To
obtain the NSVZ β functions by using dimensional
reduction [16] one has to ensure a specially tuned finite
renormalization. It was verified that in three- and four-loop
orders such a renormalization exists [17], to be referred to
as the NSVZ scheme. The NSVZ scheme (in which the
NSVZ relations are valid in all orders) was explicitly
constructed in [9,18] by using the higher derivative
regularization.
As was already mentioned, in this Letter we also

calculate supergraphs using the higher derivatives method
[7] supplemented by the Pauli-Villars regularization for
one-loop divergent (sub)diagrams [10]. This procedure can
be formulated in a manifestly supersymmetric way [19]. A
possible version of the higher derivative term is as follows.
We introduce superfield Ω related to the gauge superfield
V as

e2V ≡ eΩ
þ
eΩ: ð21Þ

The superfield Ω allows one to construct the gauge
covariant supersymmetric derivatives

∇a ¼ e−Ω
þ
DaeΩ

þ
; ∇ _a ¼ eΩD̄ _ae−Ω: ð22Þ

Using the superfield Ω and the above covariant derivatives
we construct an appropriate higher derivative term,
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SΛ ¼ 1

2g20
tr
Z

d4xd2θðeΩWae−ΩÞ

×

�
R

�
−
∇̄2∇2

16Λ2

�
− 1

�
ðeΩWae−ΩÞ; ð23Þ

where Λ is a parameter with the dimension of mass, which
plays the role of the ultraviolet cutoff (later we set
Λ ¼ MPV ¼ M0). The regulator R should obey the con-
straints Rð0Þ − 1 ¼ 0 and RðxÞ → ∞ for x → ∞. For
example, one can choose RðxÞ ¼ 1þ xn. Needless to
say, it is necessary to fix a gauge by adding the term Sgf
to the action and introduce the corresponding ghosts with
the action Sghosts. The one-loop divergences which remain
after introducing the higher derivative term are removed by
inserting the Pauli-Villars determinants into the generating
functional [10].
The Adler function defined in terms of the bare coupling

constant

Dðα0sÞ≡ −
3π

2

d
d logΛ

α−10 ðα; αs;Λ=μÞ ð24Þ

can be obtained from expression (11) by making a sub-
stitution V → θ4:

1

3π2
V4 ·Dðα0sÞ ¼

dðΔΓð2ÞÞ
d logΛ

����
V¼θ4

; ð25Þ

where V4 → ∞ is the space-time volume. (Certainly, it
should be properly regularized, see [20] for details.)
By definition, the function (24) is scheme independent

for a fixed regularization [9,18]. Here we argue that it is
related to the anomalous dimension (16) (whereM0 should
be replaced by Λ), which is also defined in terms of the bare
coupling constant. The anomalous dimension defined by
Eq. (16) also does not depend on the subtraction scheme for
a fixed regularization.
In this Letter we argued that, if the higher derivative

regularization is used, the functions D in (24) and γ are
related as

Dðα0sÞ ¼
3

2
N
X
f

q2f½1 − γðα0sÞ� ð26Þ

in all orders independently of the subtraction scheme. This
statement is an analog of a similar statement proved for the
β function of N ¼ 1 SQED in [11] and of N ¼ 1 SQED
with Nf flavors in [20].
The scheme dependent renormalization group functions

are defined in terms of the renormalized coupling constant.
In this case the derivatives with respect to log μ are
calculated at fixed values of the bare coupling constant.
Then the exact expression for theD function is valid only in
a certain subtraction scheme which seemingly can be

constructed by imposing boundary conditions similar to
the ones considered in [9,21].
Summation of supergraphs.—To prove Eq. (26) we note

that momentum integrals giving the functionD are integrals
of double total derivatives if the higher derivative method is
used for regularization of supersymmetric theories. This
implies that they have the same structure as integrals giving
the NSVZ β functions in supersymmetric theories which
was first noted in [22] and subsequently confirmed by other
calculations [23]. Hence, one of the momentum integrals
can be calculated analytically and the function D in the nth
loop can be written as an integral over ðn − 1Þ loop
momenta. This integral does not vanish due to singularities
of the integrand, which appear due to the identity

� ∂
∂Qμ

;
Qμ

Q4

�
¼ 2π2δ4ðQÞ; ð27Þ

where Qμ denotes the Euclidian momentum. The sum of
the singularities gives the term with the anomalous dimen-
sion in the exact expression for the Adler function. Details
of our calculation will be given elsewhere [24]. Here we
outline only main stages.
We will use the notation

�≡ 1

1 − ðe2V − 1ÞD̄2D2=16∂2
;

~� ¼ 1

1 − ðe−2Vt − 1ÞD̄2D2=16∂2
: ð28Þ

These expressions encode sequences of vertices and propa-
gators on the matter line (for Φ and ~Φ, respectively). Then
the singlet contribution to the Adler function (after the
substitution V → θ4) is proportional to

d
d logΛ

��
i
X
f

qfTrðθ̄cðγμÞcdθd½xμ; logð�Þ − logð ~�Þ�Þ

þ ðPVÞ
�
2
�

¼ 0; ð29Þ

where (PV) denotes the contribution of the Pauli-Villars
superfields. The commutator with xμ corresponds to the
integral over the total derivative in the momentum space,
which vanishes because the integrand does not contain
singularities. As a consequence, the singlet contribution is
given by integrals of total derivatives and vanishes. (The
Pauli-Villars contribution has a similar structure and also
vanishes for the same reason.)
The remaining contribution is proportional to

i
d

d logΛ

X
f

q2fTrhθ4½xμ; ½xμ; logð�Þ þ logð ~�Þ��i þ ðPVÞ

− terms with δ functions: ð30Þ
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Again, this is an integral of a total derivative. However, it
does not vanish due to singularities of the integrand. The
contribution of these singularities can be found repeating
the calculations made in [11]. It turns out that it is
proportional to the anomalous dimension of the matter
superfields and gives the second term in Eq. (26). Details of
this proof will be published elsewhere [24].
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