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The large-scale homogeneity and isotropy of the Universe is generally thought to imply a well-defined
background cosmological model. It may not. Smoothing over structure adds in an extra contribution,
transferring power from small scales up to large. Second-order perturbation theory implies that the effect is
small, but suggests that formally the perturbation series may not converge. The amplitude of the effect is
actually determined by the ratio of the Hubble scales at matter-radiation equality and today—which are
entirely unrelated. This implies that a universe with significantly lower temperature today could have
significant backreaction from more power on small scales, and so provides the ideal testing ground for
understanding backreaction. We investigate this using two different N-body numerical simulations—a 3D
Newtonian and a 1D simulation which includes all relevant relativistic effects. We show that while
perturbation theory predicts an increasing backreaction as more initial small-scale power is added, in fact
the virialization of structure saturates the backreaction effect at the same level independently of the equality
scale. This implies that backreaction is a small effect independently of initial conditions. Nevertheless, it
may still contribute at the percent level to certain cosmological observables and therefore it cannot be
neglected in precision cosmology.

DOI: 10.1103/PhysRevLett.114.051302 PACS numbers: 98.80.-k, 04.25.Nx, 95.36.+x, 98.80.Es

Introduction.—Our understanding of cosmological
structure formation at late times comes mainly from
Newton’s theory of gravity. This ignores effects which
must appear when using general relativity. The effects
come in a variety of forms, from dynamical effects such as
frame dragging, which alter the metric at the percent level
[1–8], to corrections to lensing and distances that can be
several percent [9–15]. As future large surveys will reach
this level of precision, it is important to determine accu-
rately any relativistic contributions to structure formation.
A more speculative effect arises from averaging over

small scale structure to reveal the large-scale dynamics of
the Universe. A macroscopic theory of gravity involves
backreaction terms which depend on the variance of the
connection which, in principle, can be large. This has led to
speculation that backreaction could even mimic dark energy
[4,16]. Although somewhat fanciful, it highlights the impor-
tance of understanding backreaction for an accurate inter-
pretation of the background cosmological model.
Averaging comes itself in different ways: Observations

are smoothed over—the distance redshift relation is typ-
ically the monopole of a much more complicated expres-
sion [9,11,15,17–20]. Averaging Einstein’s field equations
gives apparent modifications to the expansion and accel-
eration rate for average observers, and a modified curvature
[16,21–25]. The connection of these with observables is,
however, not evident.

Perturbation theory.—The importance of the averaging
problem may be estimated from perturbation theory
(see [26] for an early investigation). At linear order in
the standard model there is no backreaction from averaging
owing to the assumed homogeneity of the initial conditions
hΦi ¼ 0. Here Φ is the Bardeen potential, with power
spectrum 4πk3hΦðkÞΦ�ðk0Þi ¼ ð2πÞ3PΦðkÞδðk − k0Þ. A
crude approximation is

PΦðkÞ ¼
9Δ2

R

25½1þ ðk=keqÞ4�
with Δ2

R ¼ 2.2 × 10−9; ð1Þ

where keq ¼ aeqHeq ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ωmð1þ zeqÞ

p
is the comoving

Hubble scale at matter-radiation equality and ΔR is the
amplitude of the dimensionless curvature perturbation [27].
A much better approximation to the linear power spectrum
that we use as an initial condition for our simulation is
given in [28,29].
At second order nontrivial corrections to the background

appear. In the Hubble expansion rate H these are of order
hΦ∇2Φi ∼ hΦδi ∼ hv2i [4,30–39]. They give typical cor-
rections of size

�
ΔH
H

�
0

∼
�
keq
H0

�
2

Δ2
R: ð2Þ
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Using 1þzeq¼ρmðt0Þ=ρradðt0Þ≈2.4×104Θ−4
2.7Ωmh2, Θ2.7¼

T0=2.7K, we have (using Θ2.7 ≃ 1 and trading off the large
numerical factor in zeq against one ΔR)

ΔH
H

∼Ω2
mh2ΔR ∼ 10−5; ð3Þ

which is roughly the amplitude of first-order perturbations—
it is a remarkable coincidence that in our Universe ΔR ∼
ðH0=keqÞ2 [39]. If keq were 2 orders of magnitude larger
could one still conclude that backreaction is small [40]?
This does not necessarily settle the issue as we have to

study what happens at higher orders. At third-order there
are no new contributions on average for Gaussian initial
conditions. At fourth order, corrections of the form [39]
h∇iΦ∇iΦð∇2ΦÞ2i ∼ hv2δ2i appear. Naively, this gives a
correction

ΔH
H

∼
�
keq
H0

�
2

Δ2
Rhδ2i ∼Ω2

mh2ΔRhδ2i: ð4Þ

Estimating hδ2i depends sensitively on the modeling of
small-scale modes (smoothing scale or UV cutoff), as it is
divergent. Given that it is certainly larger than Oð1Þ, the
fourth-order contribution is larger than the second-order
contribution, implying a breakdown of perturbation theory
for estimating backreaction. Even a model which is
smoothed on 10 Mpc scales has hδ2i ∼ 1, which implies
that to use perturbation theory to estimate backreaction we
would be summing an infinite series with terms all about
the same amplitude. Consequently, (3) cannot be trusted to
give a good approximation to the full answer, and nonlinear
approaches such as numerical integration of the full
Einstein equations must be considered.
Perturbation theory tells us that there are two scales

relevant for establishing the amplitude of backreaction: the
equality scale and a smoothing scale in the UVapplied to the
perturbation Φ. The first is a physical scale depending on
the initial conditions in the early Universe. The amplitude of
backreaction depends on the Hubble rate at matter-radiation
equality because only after matter-radiation equality density
and velocity perturbations start growing. Hence, the farther
in the past equality lies, the more perturbations have grown
until today. The second is a scale which must be imposed by
hand as a limitation of the model, and is present also in
simulations due to their finite resolution.
Numerical study.—What happens in a model where

equality takes place much earlier, and more modes are
available to increase the amplitude of backreaction? How
does it depend on the smoothing scale? We conduct a
numerical study which provides a testing ground for
understanding backreaction when perturbation theory fails.
We investigate the sensitivity of backreaction to the equal-
ity scale. By considering a model with a much lower
temperature today we move the onset of any backreaction

effect to earlier times. More precisely, we obtain an earlier
onset of nonlinear evolution when the first modes reach
δ ∼ 1. Tuning the numerical resolution we can also study
the sensitivity to the smoothing scale.
Recently, some of us have found [6], using a modified

N-body code including the most important relativistic
modifications, that backreaction is indeed small and that
second-order perturbation theory gives a good approxima-
tion. Here we want to investigate whether this remains true
if we change the equality scale. We use a 1D numerical
code which contains the key features of full general
relativity and allows us to thoroughly investigate the UV
dependence. We also calculate the relevant terms with a 3D
Newtonian simulation using a post-Newtonian technique.
We shall show that the conclusion from perturbation theory
is not valid and that the effect from clustering stabilizes
once nonlinearities become relevant roughly on the level of
the second-order prediction.
The general relativistic 1D simulation is set up in the

weak field regime. For scalar metric perturbations in
longitudinal gauge, given by ds2¼a2ðτÞ½−ð1þ2ΨÞdτ2 þ
ð1−2ΦÞdx2�; this is defined as follows: we assume that the
metric perturbations, Φ∼Ψ∼OðϵÞ≪ 1, v ∼∇Φ ∼∇Ψ∼
Oðϵ1=2Þ, but δρ=ρ and ∇i∇jΦ can be arbitrarily large.
We include all terms up to order ϵ. This formalism is not
adequate to describe black holes, but it is good on small
scales as long as gravity is quasi-Newtonian. The scheme is
first order accurate on horizon scales and larger but at least
second order accurate on small scales. It fully contains
Newtonian gravity. We argue that in a cosmological context
it is accurate up to about 10−5 on all scales. More details
about this formalism and the resulting equations can be
found in [6,7]. For the purpose of this Letter, the important
point is that we have an improved treatment of small scale
corrections. We keep terms like ð∇ΦÞ2 and Φ∇i∇jΦ which
can be enhanced for short modes, but we still drop terms
like Φ2 which remain small on all scales.
In linear perturbation theory the spatial average of bothΦ

and Ψ vanishes. Including nonlinear terms this is no longer
the case. A homogeneous mode in Ψ can always be
absorbed in a redefinition of the time coordinate, τ. This
is a gauge freedom remaining within the longitudinal
gauge. However, if we fix the Friedmann equations to
the zeroth-order background we cannot absorb a homo-
geneous Φ mode into the scale factor [41]. This would
modify its evolution, hence appear like an additional
contribution to the energy momentum tensor. Such a time
dependent homogeneous mode, denoted Φ0ðtÞ, leads to a
modification of the Hubble parameter, H → H − Φ0

0 ¼
nμ;μ=3, where H denotes the comoving Hubble parameter
and 0 ¼ d=dτ. Within our approximation scheme, Φ0 obeys

3HΦ0
0 −

5

2
hΦ∇2Φi ¼ 4πGa2hδTm

0
0i: ð5Þ

Here h·i is a spatial average taken with the unperturbed
volume element. We assume that the only inhomogeneous
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source of stress energy is nonrelativistic matter. Employing a
particle description we can define a “bare” comoving
number-density perturbation δ as 1þ δ ¼ ðdN=d3xÞ=
hðdN=d3xÞi. With this definition, the physical, or “dressed”
energy density perturbation, within our approximation can
be written as

δTm
0
0 ¼ ρ0

�
1 −

�
1þ 3Φþ 1

2
v̄2
�
ð1þ δÞ

�
; ð6Þ

where ρ0 is the background matter density, and v̄2 denotes
a phase space integral over the local velocity distribution.
This approximation takes into account the first corrections
coming from the kinetic energy and the perturbation of the
volume, including the homogeneous perturbation Φ0. Here,
Φ0 can also be understood as a perturbative correction to the
scale factor a, from the averaged stress energy of the
perturbations that is ignored at the background level. It
therefore induces a correction to the expansion rate ΔH,
which in our approximation is given by ΔH ¼ −Φ0

0. The
quantitative estimation of this correction and its dependence
on the amount of small scale inhomogeneities present in
the simulation is the main aim of this Letter. The Hubble rate
we consider here is that associated with the rest frame of the
gravitational field which has 4-velocity nμ—in this frame the
magnetic Weyl curvature consists only of induced vector
and tensor modes, i.e., purely non-Newtonian terms [38].
By contrast, the Hubble rate associated with “averaged
observers” corresponding to a macroscopic fluid element
has a 4-velocity tilted with respect to nμ, and corrections
could be 2 or 3 orders of magnitude larger than the results we
find here [38]. Note that Eq. (4) is actually related to the
latter definition. In the nonlinear regime of structure for-
mation the relation between the two gauges becomes highly
nontrivial. Even though we think this is an interesting issue,
this is not what we focus on in this Letter.
Inserting Eq. (6) in Eq. (5), and using ΩmðzÞ ¼

8πGρ0ðaÞ=½3H2ðaÞ�, one finds

3HΦ0
0 þ

9

2
H2ΩmðzÞΦ0

¼ 5

2
hΦ∇2Φi − 3

2
H2ΩmðzÞ

�
3hΦδi þ 1

2
hð1þ δÞv̄2i

�
:

ð7Þ
A simple interpretation emerges if we replace the quan-

tities on the right-hand side by their Newtonian counterparts,
i.e., Φ → ψN , δ → δN . If we define the Newtonian total
kinetic energy and total potential (binding) energy, respec-
tively, as 2T¼P

N
i¼0miv2i , 2U¼P

N
i¼0miψNðxiÞ, we obtain

2Φ0
0 þ 3HΩmðzÞΦ0 ¼ −HΩmðzÞ

T þU
M

; ð8Þ

where M ¼ P
N
i¼0mi is the total rest mass, and we used

Poisson’s equation to relate δN and ψN . The perturbation of

the expansion rate is therefore driven by themean kinetic and
binding energy densities of the matter particles, which both
are ignored at the background level.
In Newtonian cosmology, T and U obey the Layzer-

Irvine equation [42,43], T 0 þ U0 þHð2T þUÞ ¼ 0.
This implies that as soon as most of the matter has
accumulated in virialized structures, such that the virial
relation 2T ¼ −U holds to a good approximation, the total
energy T þU is conserved and Φ0 approaches a constant,
Φ0 → −ðT þ UÞ=ð3MÞ. The correction to the expansion
rate, ΔH ¼ −Φ0

0 therefore approaches zero in the virial
limit. Any corrections to this are a consequence of
relativistic effects.
We have solved Eq. (8) numerically using for the right-

hand side the results from different 3D simulations carried
out with GADGET-2 [44,45,46]. Our relativistic 1D simu-
lations, on the other hand, directly solve for the second-
order potential Φ as described in [6], and we can obtain Φ0

directly. Even though, not surprisingly, the amplitudes are
different, qualitatively the 1D and 3D results agree.
In Fig. 1 we plot the perturbation of the Hubble

parameter as a function of redshift for different values of
Θ2.7 which is related to the equality scale by keqðΘ2.7Þ ¼
Θ−2

2.7keqð1Þ. In order not to mistake the effects from non-
linearities by those of a cosmological constant, which leads
to a decay of the gravitational potential due to the more
rapid expansion, we have simulated pure flat matter models

(Einstein—de Sitter). For Θ2.7 ¼ 1 we have keqð1Þ ¼
Heqð1Þ ¼ 2H0Ω

−1=2
r ¼ 0.1h2=Mpc and 1þ zeqðΘ2.7Þ ¼

½1þ zeqð1Þ�Θ−4
2.7. Assuming that clustering leads to the

stabilization of ΔH=H ¼ −Φ0
0=H, we expect that the red-

shift when this happens is proportional to zeq and therefore
scales as Θ−4

2.7. This is reasonably well verified in Fig. 1.
As further indication for the progress of structure

formation we plot in Fig. 2 the mass fraction of the
particles that are contained in regions where n velocity
streams overlap. For n > 1 this means that shell crossing
has occurred and structure formation has entered the
nonlinear regime. Figure 2 shows that this happens around
z ∼ 200 for Θ2.7 ¼ 0.25 while shell crossing only becomes
relevant at z ∼ 3 for the simulations with Θ2.7 ¼ 1.
We also studied the impact of the UV cutoff, which is

implemented in the simulations because of their finite
resolution. The amplitude of the backreaction effect ΔH=H
increases slightly with better mass resolution, but the
dependence on the cutoff is very mild.
The results shown in Fig. 1 for the 3D case are from three

simulations with 5123 particles. In the plane symmetric
case we are able to vary the cutoff in a much larger range,
and the results shown are fully converged. In this case, the
large scatter between realizations is caused by the finite
volume. Fluctuations are enhanced by the fact that, as
opposed to three dimensions, there exists only a single
mode for each given k. It should be noted that the
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realization scatter (i.e., cosmic variance) is not insignificant
also in three dimensions. In particular, we find that it is
larger than other effects, e.g., the influence of mass
resolution, gravitational softening length, and other simu-
lation parameters.
Our interpretation of these findings is that once ‘stable

clustering’ is established and most structures have formed
and decoupled from the Hubble flow, the Hubble flow just
proceeds (nearly) as before and the structures on small scales
are irrelevant. On larger scales, structure formation is still
ongoing and the virial limit is only reached asymptotically.
Discussion and conclusions.—We have shown that,

contrary to the expectations from perturbation theory,
clustering does not induce large changes in the expansion
rate. The contribution to backreaction from a given scale
decays once the scale has entered the regime of stable
clustering, i.e. once the non-linear structures have virial-
ized. In the real Universe, this stable clustering progresses
to larger and larger scales as time goes on until the Universe
becomes Λ-dominated, after which linear perturbations

no longer grow and no further scales enter the non-linear
regime.
This result indicates that backreaction never becomes

large, as the formation of nonlinear structures does not
accelerate the deviation from the averaged behavior on
large scales. Instead backreaction appears to be reduced
with the onset of nonlinear structure formation. If this
behavior of the perturbed Hubble rate is representative,
relativistic backreaction effects, while certainly being
present and non-negligible for precision cosmology with
future large surveys, cannot explain the observed accel-
erated expansion of the Universe.
Although our results and arguments are suggesting

strongly that backreaction does not significantly affect
the background, they are not yet fully conclusive. Two
areas especially need improvement. First, we have not yet
run a fully relativistic 3D simulation. Instead we used a
relativistic plane-symmetric simulation and, in addition,
computed the metric and relativistic effects based on the
particle phase-space distribution from a standard 3D
Newtonian N-body simulation. Although the results from
the two approaches agree qualitatively, it would be desir-
able to repeat the analysis with a relativistic 3D simulation.
We are planning to accomplish this task in the future.
Second, it would be preferable to consider directly observ-
ables like distances to quantify the impact of backreaction.

FIG. 2 (color online). As structure formation proceeds, more
and more mass is accumulated in non-linear structures. The figure
shows the evolution with time of the fraction of mass which
resides in regions which contain n velocity streams for the plane
symmetric simulations. For n > 1 these regions have undergone
shell crossing and this fraction is zero initially, since at the
beginning the matter perturbations are fully in the linear regime.
Perturbation theory is expected to be a poor description when a
significant proportion (∼50%, say) of the matter is in regions
which contain more than one stream.

FIG. 1 (color online). The perturbation of the Hubble rate from
backreaction for different values of Θ2.7 in Einstein–de Sitter
universes. The solid lines with error bars show the ensemble
average and realization scatter for plane-symmetric relativistic
simulations, whereas the shaded areas show the post-Newtonian
estimate obtained from three 3D Newtonian N-body simulations.
The latter is based on the estimate on the average kinetic and
potential energy of the particles, the size of the shaded regions
giving a rough indication for the uncertainty that is mainly caused
by numerical deviations from the energy constraint, i.e., the
Layzer-Irvine equation. Dashed lines are the prediction from
second-order perturbation theory. For Θ2.7 ¼ 0.25 the backreac-
tion ΔH=H stabilizes roughly around zst ≃ 55, while for Θ2.7 ¼
0.5 this happens at zst ≃ 2.5. Note that for Θ2.7 ¼ 1 the time of
stabilization is actually in the future, zst < 0. In the 1D simu-
lations the stabilization occurs earlier and at a lower amplitude.
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