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Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel
phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic
Weyl superfluid state can arise as a low temperature stable phase in a 3D dipolar Fermi gas. A crucial
ingredient of our model is a direction-dependent two-body effective attraction generated by a rotating
external field. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy. The
finite temperature phase diagram of this system is studied and the transition temperature of the Weyl
superfluidity is found to be within the experimental scope for atomic dipolar Fermi gases.
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Weyl superfluids or semimetals represent recent develop-
ments in generalizing topological phases from gapped to
gapless systems (e.g., from topological insulators to semi-
metals), in condensed matter physics [1,2]. These Weyl
states are characterized by the presence of two (or more)
gapless Weyl points, which are topologically protected
against small perturbations. The Weyl nodes lead to a
variety of fascinating phenomena such as unusual surface
states [3,4], Hall effects [5,6], and other transport features
[7,8]. Finding electronic materials supporting Weyl states
has attracted considerable interest [9]. There are many
proposed potential candidate materials, such as the pyro-
chlore iridates [3], topological insulator multilayer struc-
tures [7,10–12], as well as certain quasicrystals [13].
However, there is still no compelling experimental evi-
dence for the observation of one. In the field of ultracold
atoms, this phase was predicted to appear in spin-orbit
coupled Fermi gases [14,15]. This line of active research
awaits for the future experimental breakthrough of syn-
thesizing higher dimensional artificial spin-orbit coupling
with controlled heating [16]. After all, the search for
Weyl superconductors remains an open problem for both
electronic and ultracold atomic systems.
In this Letter, we report the emergence of Weyl super-

fluidity in a 3D single-component dipolar Fermi gas with
an effective attraction engineered by a rotating external
field. Recently, degenerate dipolar Fermi gases witnessed
rapid developments in both magnetic dipolar atoms (such
as 167Er [17,18] and 161Dy [19,20] atoms) and polar
molecules [21,22], stimulating tremendous interest in
dipolar effects in many-body phases. The effects of the
anisotropic dipolar interaction on the fermion many-body
physics have been extensively investigated [23]. In
particular, this provides the possibility of superfluid
pairing between dipolar Fermi atoms in spinless or

multicomponent systems [24–27] at low temperatures.
For dipoles aligned parallel to the z direction, a p-wave
superfluid state with the dominant pz symmetry was
studied in a three-dimensional dipolar Fermi gas [28]
and the competition between this superfluidity and nematic
charge-density wave was also discussed [29]. For a dipolar
Fermi gas confined in a 2D plane, superfluid states of
p-wave symmetry [30–32], including a pþ ip state in
particular [31,32], are predicted.
The key idea here is to engineer a direction-dependent

two-body effective attraction, which supports Cooper pairs
with the chirality encoded in the p-wave pairing gap. This
Weyl superfluid state breaks time reversal symmetry as
well as inversion symmetry. Such broken symmetries have
profound implications for the interesting topological
defects [1]. We shall describe this state in a 3D magnetic
dipolar Fermi gas composed of one hyperfine sate, which
has been realized in the experimental system of 167Er [17]
recently. The direction of dipole moments can be fixed by
applying an external magnetic field. Let the external field
be orientated at a small angle with respect to the xy plane
and rotate fast around the z axis. The time-averaged
interaction between dipoles [33] is isotropically attractive
in the xy plane and repulsive in the z direction. In general,
the attraction is expected to cause Cooper pairing instability
while the repulsion should restrict the pairing from certain
nodal directions. Their combined effect could give rise
to Weyl Fermi points for the Bogoliubov quasiparticles.
Such a heuristically argued result is indeed confirmed by a
self-consistent calculation through the model to be intro-
duced below.
Effective model.—Consider a 3D spinless dipolar Fermi

gas subjected to an external rotating magnetic field

BðtÞ ¼ B½ẑ cosφþ sinφðx̂ cosΩtþ ŷ sinΩtÞ�;
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where Ω is the rotation frequency, B is the magnitude of
magnetic field, the rotation axis is z, and φ is the angle
between the magnetic field and the z axis. In strong
magnetic fields, dipoles are aligned parallel to BðtÞ.
With fast rotations, the effective interaction between
dipoles is the time-averaged interaction

VðrÞ ¼ d2ð3cos2φ − 1Þ
2r3

ð1 − 3cos2θÞ≡ d02

r3
ð1 − 3cos2θÞ;

where d02 ≡ d2ð3cos2φ − 1Þ=2 with the magnetic dipole
moment d, r is the vector connecting two dipolar particles,
and θ is the angle between r and the z axis. The effective
attraction VðrÞ < 0 is created by making cosφ <

ffiffiffiffiffiffiffiffi
1=3

p
,

which is our focus in this Letter.
The effective Hamiltonian of the system above is

given by H ¼ R d3rψ†ðrÞ½−ðℏ2▽2=2mÞ − μ�ψðrÞþ
1
2

R
d3r
R
d3r0ψ†ðrÞψ†ðr0ÞVðr − r0Þψðr0ÞψðrÞ, where ψðrÞ

is the fermion field and μ is the chemical potential.
Because of the attractive interaction, fermions tend to

pair with each other and form a superfluid state at low
temperatures. To study this superfluid state, we construct a
general theory to describe a spinless Fermi gas by a
fully self-consistent Hartree-Fock-Bogoliubov method.
The details are given in the Supplemental Material [34].
Constructing a bosonic effective action by Hubbard-
Stratonovich transformation, we obtain self-consistent
equations under a saddle-point approximation for the
fermion bilinears κðrÞ ¼ R d3r0Vðr − r0Þψ†ðr0Þψðr0Þ,
λðr; r0Þ ¼ −Vðr − r0Þψ†ðrÞψðr0Þ, and ~Δðr; r0Þ ¼
Vðr − r0Þψðr0ÞψðrÞ. Correspondingly, the Hartree-Fock
self-energy and superconducting gap are given as

Σðr0; rÞ≡ hκðrÞiδðr − r0Þ þ hλðr0; rÞi;
Δðr0; rÞ≡ h ~Δðr0; rÞi; ð1Þ

where h…imeans the expectation value in the ground state.
3D uniform dipolar Fermi gas.—We now apply the

general theory outlined above to the system of a 3D
uniform spinless dipolar Fermi gas in the presence of a
rotating magnetic field. From the symmetry of the system,
at least for not too strong interaction strength, we anticipate
that pairing only occurs between a particle with momentum
k and another with momentum −k as in the standard BCS
theory. Because of the translational symmetry, it is con-
venient to study this problem in the momentum space.
After Fourier transformation of Eq. (1), the Hartree-Fock
self-energy and the pairing gap read

Σk ¼ Vð0Þn −
1

υ

X
k0

Vðk − k0Þ 1
2

�
1 −

ξk0

Ek0
tanh

�
β

2
Ek0

��
;

ð2Þ

Δk ¼ −
1

υ

X
k0

Vðk − k0Þ Δk0

2Ek0
tanh

�
β

2
Ek0

�
; ð3Þ

where Ek is the quasiparticle excitation energy given by
Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ jΔkj2

p
with the kinetic energy of fermions

ξk ¼ εk þ Σk − μ and εk ¼ ℏ2k2=2m. The interaction
between two dipoles in the momentum space is given
by VðqÞ ¼ ð4πd02=3Þð3cos2θq − 1Þ, with the angle θq
between momentum q and z axis, n is the total density,
υ is the volume, and β ¼ 1=ðkBTÞ.
It is known that the gap equation [Eq. (3)] has ultraviolet

divergence [26]. The origin of the divergence can be
attributed to the singularity of the dipolar interaction
potential for large momentum, or equivalently for short
distance. Just as in the treatment of two-component Fermi
gas with contact interaction [35], we need to regularize the
interaction in the gap equation [Eq. (3)]. The divergence
can be eliminated by expressing the bare interaction
Vðk − k0Þ in Eq. (3) in terms of the vertex function
(scattering off-shell amplitude) [36] as Γðk − k0Þ ¼
Vðk − k0Þ − ð1=υÞPqΓðk − qÞð1=2εqÞVðq − k0Þ, and the
gap equation will be renormalized as

ΔðkÞ ¼ −
1

υ

X
k0

Γðk − k0ÞΔðk0Þ
�
tanh βEðk0Þ

2

2Eðk0Þ −
1

2εk0

�
: ð4Þ

Note that the Hartree term for the self-energy in Eq. (2),
Vð0Þn vanishes, since for dipolar interaction in the 3D
uniform system, Vð0Þ ¼ 0 [37] and renormalization of the
interaction has a negligible effect on the self-energy. Then,
the Hartree-Fock self-energy is expressed as

Σk ¼ −
1

υ

X
k0

Vðk − k0Þ 1
2

�
1 −

ξk0

Ek0
tanh

�
β

2
Ek0

��
: ð5Þ

The total density n can be obtained from the thermo-
dynamic potential Ω by using the relation N ¼ −∂Ω=∂μ,

n ¼
X
k

1

2υ

�
1 −

ξk
Ek

tanh

�
β

2
Ek

��
: ð6Þ

Under the constraint of Fermi statistics for this single
component dipolar Fermi gas, the dominant pairing insta-
bility is in the channel with orbital angular momentum
L ¼ 1. The most stable low temperature phase has px þ
ipy symmetry, following from the fact that this phase fully
gaps the Fermi surface, in contrast to competing phases,
such as px or py superfluid state [38]. Note that in the
presence of a rotating magnetic field, all the dipoles rotate
with respect to the z axis, so the system has a SOð2Þ spatial
rotation symmetry. This symmetry is not broken in the
px þ ipy pairing state, and we can thus write down the

Cooper pair as Δk ≡ Δðkρ; kzÞeiφk , where kρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
and φk is the polar angle of the momentum k in the xy
plane, to simplify the calculation in the Hartree-Fock-
Boguliubov approach.
Weyl fermions.—With the time-reversal symmetry

spontaneously broken in the superfluid state, topological
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properties emerge in quasiparticle excitations, which
are described by a mean field Hamiltonian HSF ¼P

k½ξkc†kck þ ðΔ�
k=2Þc−kck þ ðΔk=2Þc†kc†−k�, with ck

the fermion annihilation operator. This Hamiltonian can
be expressed in the matrix form by

HSF ¼
X
k

ðc†k; c−kÞ
 

ξðkÞ
2

ΔðkÞ
2

Δ�ðkÞ
2

− ξðkÞ
2

!�
ck
c†−k

�

≡X
k

ðc†k; c−kÞ~dðkÞ · ~σ
�

ck
c†−k

�
;

where the ~d vector is defined in terms of the Pauli matrices
σ’s. The dx;y components vanish along the kz axis, whereas
along this axis, dz vanishes at only two points kCþ ¼
ð0; 0; kCþÞ and kC

− ¼ ð0; 0; kC−Þ (¼ −kCþ) [Fig. 1(a)]. In the

(kx, ky) momentum plane with kC− < kz < kCþ, ~dðkÞ wraps
around a sphere as shown in Fig. 1(b). Evidently, it points
to the south pole on the kz axis, while with increasing kρ,

the ~dðkÞ vector varies continuously and eventually points

to the north pole as kρ → ∞. This vector ~dðkÞ thus forms a
Skyrmion in the momentum space with a topological
charge �1 (where the “�” sign reveals the spontaneous
time-reversal symmetry breaking). However, in other
regions kz > kCþ or kz < kC−, the topological charge van-
ishes. These two gapless points kC

� are Weyl nodes,
defining the corresponding topological transitions in the
momentum space [7,15]. Close to the Weyl nodes, the
Hamiltonian takes the form of 2 × 2Hamiltonian of a chiral
Weyl fermion [39]. We have checked that the quasiparticle
energy dispersionEk is linear around both twoWeyl points,
for instance as shown in Fig. 2(b) when the interaction
strength J ¼ 3 where J ≡ jðmd02=ℏ2ÞkFj. As shown in
Figs. 2(c) and 2(d), the Weyl nodes are hedgehoglike

topological defects of the vector field ~dðkÞ, which are the
point source of Berry flux in momentum space, with a
topological invariant NC ¼ �1. Here NC is defined
by NC ¼ ð1=24π2Þϵμνγχ tr

H
Σ dS

χGð∂G−1=∂kμÞGð∂G−1=
∂kνÞGð∂G−1=∂kγÞ, where G−1 is the inverse Green’s

function for the quasiparticle excitation, Σ is a 3D surface
around the isolated Fermi point kCþ or kC

−, and tr stands for
the trace over the relevant particle-hole degrees of freedom
[1]. The quasiparticle excitations near the Fermi points
realize the long-sought low-temperature analog of Weyl
fermions as originally proposed in particle physics. These
Weyl nodes are separated from each other in momentum
space. They cannot be hybridized, which makes them
indestructible, as they can only disappear by mutual
annihilation of pairs with opposite topological charges.
This is the mechanism of topological stability of this Weyl
superfluid state, which is distinct from the spectral-gap
protection in insulating topological phases. To characterize
the existence of Weyl fermions, we calculate the fermionic
density of states (DOS) for superconducting states [40,41]
NðEÞ ¼ 1=ð2πÞ3 R d3k 1

2
ð1 þ ðξðkÞ=EðkÞÞÞδ½E − EðkÞ�,

which is directly related to the radio frequency (rf)
spectroscopy signal [42]. With linear dispersion near
Weyl nodes, we find NðEÞ ∝ E2 when E → 0, which is
a direct manifestation of Weyl fermions. This behavior of
DOS is confirmed in our numerics [Fig. 2(a)]. The
experimental advances in rf measurement [43,44] makes
the detection of this signal experimentally accessible.
The other important feature of Weyl fermions realized in

this dipolar gas is that they have anisotropic dispersion,
reflecting the anisotropy of dipolar interactions. In
Fig. 2(b), the conic quasiparticle dispersion as a function
of the momentum k − kCþ is shown. This momentum is
chosen with a certain angle ~θ respecting to the kz axis. The
cones with positive and negative branches correspond to
the Bogoliubov quasiparticle energy �Eðk − kCþÞ. The
Fermi velocity, shown by the slope of the quasiparticle
dispersion, strongly depends on the angle ~θ.
Anisotropic superconducting gap.—We now discuss

the superconducting gap for fermions resulting from
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FIG. 1 (color online). (a) Gapless points along the kz axis, where
the unit of momentum is the Fermi momentum kF. (b) Illustration

of the Skyrmion configuration formed by the ~dðkÞ vector in the
(kx, ky) plane, with fixed kz ∈ ðkC−; kCþÞ. The arrows show dx;y
components, and the colors index the dz component.

(a) (b)

(d)(c)

FIG. 2 (color online). (a) Density of states which has been
defined in the main text in units of nF=EF, where nF ¼ k3F=6π

2

and EF ¼ ℏ2k2F=2m. (b) Quasiparticle dispersion around the
gapless points. There are four branches of conic energy spectra
shown here. For the two branches in the middle we choose
~θ ¼ π=10, while for the other two we choose π=2. (c) and
(d) Hedgehoglike topological defects formed by the ~dðkÞ vector
around two Weyl nodes.
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anisotropic dipole-dipole interaction. For clarity of dem-
onstration, we take the first-order Born approximation by
replacing the vertex function Γðk − k0Þ in the gap equation
[Eq. (4)] by the bare dipolar interaction Vðk − k0Þ. By
numerically solving the Hartree-Fock self-energy equation
[Eq. (5)], the gap equation [Eq. (4)], and number equation
[Eq. (6)] self-consistently, the superconducting gap
anisotropy has been investigated. As shown in Fig. 3(a),
the magnitude of the order parameter (superconducting
gap) on the Fermi surface ΔFðθkÞ monotonically increases
when enlarging the angle θk between the momentum k and
z axis. The maximum value of ΔFðθkÞ is reached in the
direction perpendicular to the dipoles, say θk ¼ π=2. This
is because the dipolar interaction is mostly attractive when
θk ¼ π=2. In the direction of the dipoles, namely θk ¼ 0
the order parameter vanishes. Figure 3(b) shows that the
order parameter is also dependent on kρ with fixed kz. This
can be understood from the analysis of the gap equation
[Eq. (4)] that the main contribution to the integral comes
from the region of small momentum which is close to the
Fermi surface. In the weak interaction regime, the pairing
order parameter is exponentially small, for instance when
J ¼ 3 it is around 10−3EF. However, when the interaction
strength increases, the superconducting gap will be com-
parable to EF. For example, when J ¼ 15 it reaches around
0.4EF. The anisotropy of the order parameter provides a
crucial difference from both s [35] and p-wave pairing [45]
due to a short-range attractive interaction. This anisotropy
ensures the anisotropic momentum dependence of the gap
in the spectrum of single particle excitations. For example,
excitations with momenta perpendicular to the direction of
the dipoles acquire the largest gap. In contrast to this, the
excitations with momenta in the direction of the dipoles
remain unchanged. Therefore, the response of this dipolar
superfluid Fermi gas to small external perturbations will
have a pronounced anisotropic character.
Finite temperature phase transition.—Upon increasing

temperature the Weyl superfluid state will undergo a phase
transition to a normal state. By numerically solving the
Hartree-Fock self-energy equation [Eq. (5)], gap equation
[Eq. (4)], and number equation [Eq. (6)] self-consistently
at finite temperature, the BCS transition temperature is

obtained as shown in Fig. 5. We find that the BCS transition
temperature is a monotonically increasing function of the
interaction strength J. However, the strong enough inter-
action will cause the system to suffer from the mechanical
instability. The reason for that is as follows. The magnitude
of superconducting gap increases with enhancing the
interaction strength. Because of the attractive nature of
the effective interaction between dipoles, the free energy of
this dipolar gas is smaller than that of an ideal Fermi gas.
This energy reduction increases with the interaction
strength (or equivalently the density of the gas with a
certain dipole moment). When the interaction strength is
large enough, the effect of the interaction is dominant and
the system can be unstable. As shown in Fig. 4, the
chemical potential is a monotonically decreasing function
when the density is above a critical value, and the
compressibility is negative, indicating that the superfluid
state is dynamically unstable. By considering the mechani-
cal instability of the system, as shown in Fig. 5, the finite
temperature phase diagram is obtained. We find that the
BCS transition temperature of a stable superfluid state can
reach around 0.2EF at mean-field level, which approaches
to the current experimental temperature region [17,19].
In the current experiments, for example, 167Er atom’s

magnetic dipole moment is 7μB and the density of the
system is about n ¼ 4 × 1014 cm−3. The Fermi energy
is given by EF ¼ ðℏ2=2mÞð6π2nÞ2=3 ≈ 0.16 MHz and the
corresponding Fermi temperature is TF ¼ EF=kB ≈ 1 μK.
To increase the effective attraction, one may consider

(a) (b)

FIG. 3. Anisotropic superconducting pairing order
parameter with different interaction strengths J ¼ 3 and 7
(J ≡ jðmd02=ℏ2ÞkFj). (a) The superconducting gap ΔFðθkÞ on
the Fermi surface versus the angle θk between the momentum k
and z axis. (b) The superconducting gapΔðkρ; kzÞ as a function of
kρ with fixed kz.

(a) (b)

FIG. 4. Chemical potential μ versus the density n. In (a), the
temperature is T ¼ 0, while in (b) the temperature is
kBT ¼ 0.1EF. Here, the unit of μ is Ed ≡ ℏ6=ðm3d4Þ and the
unit of n is nd ≡ ½ℏ2=ðmd2Þ�3.

FIG. 5 (color online). Finite temperature phase diagram. The
solid line stands for theBCS transition temperaturewhich separates
the region between the superfluid state (SF) and normal state (NG).
The area on the right-hand side of the dashed line demonstrates the
instability of the system due to the strongly attractive interaction.
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adding a shallow optical lattice. For instance, with lattice
strength V ¼ 6ER, the BCS transition temperature can
reach around 3 nK. A similar estimate can be obtained
for 161Dy atom which has a larger magnetic dipole moment
of 10μB, the corresponding dipolar interaction strength is
around two times larger than that of 167Er. Under the same
condition, the BCS transition temperature can reach around
50 nK. Furthermore, taking advantage of a recent exper-
imental realization of Feshbach resonance in magnetic
lanthanide atoms such as Er [46], the dipole-dipole inter-
action is highly tunable. The transition temperature is
estimated to reach around 0.2 μK or even higher. This
high transition temperature Tc makes it promising to obtain
the Weyl superfluid state in experiments.
Conclusion.—We propose that an anisotropic Weyl

superfluid state can be realized in a 3D spinless dipolar
Fermi gas. The crucial ingredient of our model is the
direction-dependent effective attraction between dipoles
generated by a rotating external field. The long-sought low-
temperature analog of Weyl fermions of particle physics
has been found in the quasiparticle excitations in this
superfluid state. The stability and the transition temperature
are also studied, which will be useful for exploring this
Weyl superfluid state in future experiments.
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