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A magnetic impurity in a fermionic superfluid hosts bound quasiparticle states known as Yu-Shiba-
Rusinov states. We argue here that, if the impurity is mobile (i.e., has a finite mass), the impurity and its
bound Yu-Shiba-Rusinov quasiparticle move together as a midgap molecule, which has an unusual
“Mexican-hat” dispersion that is tunable via the fermion density. We map out the impurity dispersion,
which consists of an “atomic” branch (in which the impurity is dressed by quasiparticle pairs) and a
“molecular” branch (in which the impurity binds a quasiparticle). We discuss the experimental realization
and detection of midgap Shiba molecules, focusing on Li-Cs mixtures, and comment on the prospects they
offer for realizing exotic many-body states.
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A key project in ultracold atomic physics [1] involves
using the richness of atomic structure to create “designer”
many-body systems—e.g., spins with SUðNÞ symmetry [2]
or bosons in gauge fields [3]—that have no solid-state
equivalent. Condensed matter physics, meanwhile, has
developed the converse project of exploiting many-body
correlations to generate quasiparticles (e.g., anyons [4]) that
are qualitatively unlike electrons or atoms. Such quasipar-
ticles are usually excitations, but might exist, even at zero
temperature, at impurities, topological defects, or edges [5].
In real materials, impurities, edges, etc., are immobile on
the time scales of interest. But ultracold atomic systems do
not have this restriction, and in these systems impurities
are naturally mobile; hence, the impurity and its captured
quasiparticle can form a coherently moving molecule.
Binding exotic quasiparticles to mobile impurities offers
a new method for designing particles whose dispersion
and exchange statistics are inherited from an underlying
correlated many-body state. Such “designer molecules” can
access regimes of few- and many-body physics that are
inaccessible by purely atomic or solid-state approaches.
Here, we consider perhaps the simplest such system,

comprising a mobile magnetic impurity in a fermionic
superfluid; natural experimental realizations include two-
species mixtures (e.g., Li-Cs mixtures) in which one
species is fermionic. When the impurity is spatially
localized, it binds a midgap quasiparticle state, called a
Yu-Shiba-Rusinov (YSR) state [6–17]. Depending on the
impurity-fermion coupling, the YSR state is either occu-
pied or empty at zero temperature. We argue that when the
impurity is mobile, it moves together with its quasiparticle
state, forming a midgap “Shiba” molecule; at strong
coupling, this molecule is the ground state of the system
(Fig. 1). The midgap Shiba molecule differs from the
molecule formed by an impurity in a one-component Fermi
gas [18–22]; the midgap Shiba molecule exists deep in the

BCS limit, where there are no two-body bound states.
Furthermore, the midgap Shiba molecule has an unusual
dispersionwith a sphericalminimuminherited from theFermi
surface (Fig. 1). Spherical dispersion minima have attracted
interest in the context of light-induced Rashba spin-orbit
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FIG. 1 (color online). (a) Mexican-hat dispersion of midgap
Shiba molecule. (b) Phase diagram in three dimensions, as a
function of impurity mass M and impurity-fermion coupling J.
As J is increased, the system goes from a phase in which the
midgap Shiba molecule does not exist, to one in which it exists as
an excited (i.e., unstable) state, and finally one in which it is the
ground state. Boundaries are given by Eqs. (4), (6) (including
mass renormalizations as discussed in text). For heavy impurities
(below dashed gray line), one recovers fixed-impurity behavior.
Shaded region indicates the achievable parameter regime for Li-
Cs mixtures near the 843 G and 880 G heteronuclear resonances
[27,28]. (c) Dispersion relation, showing midgap Shiba molecule
(thick black line), “undersea” Feshbach molecule (thin black
line), and Bogoliubov quasiparticles (gray lines). The midgap
Shiba molecule’s dispersion can be mapped out by driving radio-
frequency (rf) transitions from it to the Feshbach molecule.
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coupling, because their high degeneracy enhances inter-
actions, stabilizing exotic correlated phases [23–25].
Optically realizing an isotropic Rashba dispersion is chal-
lenging [26], whereas the dispersion of midgap Shiba
molecules in an isotropic system is automatically isotropic.
The parameter controlling the midgap Shiba molecule’s

unusual properties is the impurity recoil energy,
E ≡ 2k2F=M, where M is the impurity mass and kF is
the Fermi momentum [29]. For heavy impurities, E is small
compared with the impurity-fermion coupling; therefore,
impurity scattering mixes all the states near kF, and the
bound-state properties resemble those of a fixed impurity
(Fig. 2). However, when E is large, processes scattering a
quasiparticle across 2kF are off resonance byE [30]; therefore,
the lowest-energy molecular-branch states consist of an
impuritywithmomentum∼0 andaquasiparticlewithmomen-
tum ∼kFn̂ along some specific direction n̂. Consequently,
when a molecule exists, it must have center-of-mass momen-
tumkF. Since n̂ is arbitrary, themolecular branchhas a circular
or spherical dispersion minimum by symmetry.
Below, we address the central questions concerning

these unusual molecules and polarons. First, we identify
critical couplings for the midgap Shiba molecule to exist
as (a) an excited state, and (b) the ground state. Second,
we compute the effective-mass corrections for both the
impurity itself (the “polaron”) and the midgap Shiba
molecule, thus mapping out the full dispersion of the
one-impurity problem. Finally, we discuss the regime of
validity of our analysis, and propose an experimental
method for probing the midgap Shiba molecule.
Model.—We consider a system governed by the

Hamiltonian

H ¼ P2=ð2MÞ þHBCS þHint;

HBCS ¼
X
k

�X
σ

ϵkc
†
kσckσ þ Δðc†k↑c†−k↓ þ H:c:Þ

�
;

Hint ¼ V−1
X
kk0σ

ðV þ JσÞeiðk−k0Þ·Xðc†kσck0σ þ H:c:Þ: ð1Þ

Here,X;P are the impurity position and momentum; HBCS
and Hint are, respectively, the fermionic BCS Hamiltonian
and the fermion-impurity interaction; ckσ annihilates a
microscopic fermion of momentum k and spin σ ¼ �1;
ϵk ¼ vFðk − kFÞ is the linearized free fermion dispersion;
Δ is the superconducting gap; V and J are spin-independent
and spin-dependent parts of the impurity-fermion interac-
tion; and V is the system volume. In terms of Bogoliubov
quasiparticle operators γk↑ ≡ uk↑ck↑ þ vk↑c

†
−k↓, one

can rewrite HBCS ¼ P
kσ Ekγ

†
kσγkσ; the quasiparticle

dispersion is Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ϵ2k

q
. Conserved quantities under

H are (i) the total impurity plus fermion momentum P0,
(ii) the fermion parity, and (iii) the number difference
between ↑ and ↓ fermions. We focus on the experimentally
relevant three-dimensional case; the one-dimensional case
is discussed in the Supplemental Material [31].
Molecular threshold.—We first estimate the threshold

for a molecular state to exist, using perturbation theory
in Hint. We express Hint in terms of quasiparticles; for
simplicity we take V ¼ 0,

Hint ¼ V−1
X
kk0σ

eiðk−k0Þ·X½Jσðuku�k0 þ vkv�k0 Þ�γ†kσγk0σ

þ
X
kk0

eiðk−k0Þ·X½Jσukvk0γk↓γ−k0↑� þ H:c: ð2Þ

Perturbatively, we are only concerned with states for which
Ek ≃ Δ; for these, uk ≈ vk ≈ 1=

ffiffiffi
2

p
[32]. Here the γ†γ

terms involve scattering between the impurity and a
quasiparticle; γ†γ† (γγ) terms create (destroy) quasiparticle
pairs. Pair creation or destruction inevitably changes the
energy by ∼2Δ, and is off-resonant, whereas the energy
change associated with scattering a quasiparticle from one
state to another can be arbitrarily small. Therefore, to
leading order, we neglect the second line of Eq. (2); under
this approximation, the total quasiparticle number is con-
served. We wish to look for a bound state of the impurity
and one quasiparticle; evidently, this is a two-particle
scattering problem with a contact interaction. The unusual
feature is the Mexican-hat quasiparticle dispersion: the
lowest-energy states with one quasiparticle are those in
which the quasiparticle has momentum ∼kFn̂, where n̂ is
an arbitrary unit vector, and the impurity has momentum
P ¼ 0; thus, P0 ¼ kFn̂. The perturbation couples such a
state to other states with impurity momentum p and
quasiparticle momentum kFn̂ − p. Because states with
jpj≃ kF are suppressed by large recoil energy denomi-
nators ∼E, we assume jpj ≪ kF. Taking n̂ ¼ x̂, the energy
of a state with a given p is

Ξp ≃ ðp2Þ
2M

þ Δþ v2F
2Δ

p2
x ¼ Δþ p2

x

ð 1
2M þ v2F

2ΔÞ
−1 þ

p2⊥
2M

; ð3Þ

where p⊥ ≡ ðpy; pzÞ. This is simply the dispersion of a
free particle with an anisotropic mass, My ¼ Mz ¼ M;
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FIG. 2 (color online). Differences between bound states for a
fixed impurity (left) and a mobile impurity (right). Scattering
across the entire Fermi surface is resonant for the fixed impurity
but off-resonant for the mobile impurity owing to recoil (top
panel). Consequently, the Shiba state has contributions from all
over the Fermi surface for a fixed impurity but only a small patch
of the Fermi surface for a mobile impurity (lower panel).
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Mx ¼ ð1=M þ v2F=ΔÞ−1. Thus, the criterion for the midgap
Shiba molecule to exist is the same as that for a particle
with anisotropic mass, subject to an attractive contact
potential, to have a bound state. Bound states correspond
to zeroes of the inverse T-matrix [11], which takes the form
T−1ðωÞ ∼ 1=J −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MxMyMz

p ðA − BωÞ, where A; B are
expressions that do not depend on the impurity mass
but do in general depend on a high-energy cutoff. We
eliminate this cutoff-dependence using our knowledge of
the infinite-mass (i.e., pinned-impurity) bound state energy
E∞ ≃ ΔJ2Nð0Þ2. We then find that the threshold J0 for the
molecular state to exist is

J0Nð0Þ≃ ð2mÞ3=2
M

�
1

M
þ v2F

Δ

�
1=2

ffiffiffiffiffiffiffi
EF

E∞

s
; ð4Þ

whereas, for jJj > J0, the molecular binding energy
(measured from the gap edge) is

Eb ≃ −E∞ð1 − J0=jJjÞ: ð5Þ
Here, m is the fermion mass; Nð0Þ ∼mkF is the density of
states per unit volume at the Fermi level. Moreover, the
relative-coordinate wave function of the molecule decays
exponentially, with a characteristic real-space size of
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MjEbj

p
in the directions tangent to the Fermi surface

and vF=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΔjEbj

p
(generally much longer) in the normal

direction.
The midgap Shiba molecule’s dispersion follows analo-

gously. Rotational invariance implies that there is a bound
state of equal binding energy for every P0 whose magnitude
is kF. Thus, the molecule has a spherical dispersion
minimum centered at kF. The mass in the direction normal
to the Fermi surface is simply the sum of the impurity
mass and the inverse curvature of the quasiparticle
dispersion, M⊥

mol: ¼ M þ Δ=v2F.
Parity-changing transition—For small J, the bound-state

energy is close to the gap edge. Thus, the midgap Shiba
molecule costs energy ∼Δ relative to the atomic-branch
ground state (which has no quasiparticles). As J increases,
the gap between atomic and molecular branches closes, and

they cross at some Jc [33,34]. In this regime, Δ cannot be
treated as large; however, we retain the assumption that the
recoil E is a large scale (Fig. 2). Specifically, we assume
J;Δ ≪ E ≪ EF. We then find the molecular energy by
computing the T-matrix for impurity-quasiparticle scatter-
ing in the ladder approximation (see the Supplemental
Material [31]). We find that the critical coupling obeys

Jc ≃ ½k2F=ðMΔÞ�J∞c ; ð6Þ

where J∞c ∼ 1=Nð0Þ is the fixed-impurity transition point
[11]. The M-dependence follows from phase-space con-
siderations. In the fixed-impurity limit, the bound state
involves quasiparticle states from the entire Fermi surface
(Fig. 2, left). By contrast, for a mobile impurity, recoil
limits accessible quasiparticle states to a patch of transverse
dimension ∼

ffiffiffiffiffiffiffiffiffiffi
MEb

p
. This phase-space reduction means

the critical Jc needed for a given bound-state energy is
increased by a factor ðkF=

ffiffiffiffiffiffiffiffiffiffi
MEb

p Þ2 relative to the fixed
impurity case.
Effective mass.—So far, we have explored the effects of

the impurity recoil on the bound-state spectrum. We now
discuss how the fermions affect the impurity recoil via
polaronic effective-mass shifts [35], involving processes in
which the impurity emits and reabsorbs virtual quasipar-
ticle pairs. Because each quasiparticle pair costs an energy
≳2Δ, the creation of many pairs is suppressed (i.e., there
is no orthogonality catastrophe). Moreover, for kinematic
reasons, these pairs are likeliest to lie on the dispersion
minimum [Fig. 3(a)]. Thus, the quasiparticle-pair energy
≈2Δ, and the perturbative impurity energy shift is

−J2ðmΔÞ3=2
Z

d3q=
�
P2

2M
−
�ðP − qÞ2

2M
þ 2Δ

��
:

The ultraviolet divergence in this expression can be
eliminated by accounting for the high-q behavior of the
interaction vertex. For computing the effective mass, one
need not regularize this divergence: the second derivative at
P ¼ 0 converges, yielding the effective mass

M� ≃Mf1þ 3=ð
ffiffiffi
2

p
π4ÞJ2ΔðmMÞ3=2g: ð7Þ

The effective mass of the midgap Shiba molecule (obtained
similarly) is

M⊥;�
mol ≃M⊥

mol½1þ 1=ð16
ffiffiffi
2

p
π5ÞJ2k2Fðm3M⊥

molÞ1=2�: ð8Þ

For larger J, one must go beyond perturbation theory; as
detailed in the Supplemental Material [31], one can findM�
self-consistently by (a) replacing the bare interaction
with the T-matrix [36], and (b) including processes in
which the impurity emits multiple quasiparticle pairs.
When JNð0Þ ≫ 1, we find the J-independent result

M� ≃m½E2
F=fEðΔ − EbÞg�2=3: ð9Þ
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FIG. 3 (color online). (a) An impurity with momentum P is
likeliest to create quasiparticle pairs along the shaded strip of the
Fermi surface; these excitations, being tangent to the Fermi
surface, are infinitely massive. (b) Schematic dispersions of the
lowest states in the atomic (blue) and molecular (red) branches for
weak coupling JNð0Þ≃ 0.2; here, effective-mass corrections are
small. For Δ ≪ E, the branches cross. At high energies (shaded)
these branches merge into the multiparticle continuum.
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The dressed impurity retains a Mexican-hat dispersion
(and our calculations remain self-consistent) as long as
E ≳ ffiffiffiffiffiffiffiffiffiffi

ΔEF
p

, i.e., in the BCS limit. This result, although
derived specifically for the Shiba molecule, is in fact a
general result for polaron problems in which the “bath”
dispersion is Mexican-hat-shaped (e.g., Rashba spin-orbit
coupled systems [23]).
Combining results for Eb and M�, one can construct the

full dispersion of the impurity [Fig. 3(b)]. At small P0, the
lowest-energy state is in the atomic branch with effective
mass M�; as P0 increases, the atomic and molecular
branches cross (provided that Δ≲ E), and the dispersion
near kF is Mexican-hat shaped with a curvature M⊥;�

mol. At
momenta ð2M�ΔÞ1=2 ≲ P0 ≲ kF − ðM⊥;�

molΔÞ1=2, the impu-
rity radiates into the two-quasiparticle continuum. As J
increases, the minimum of the molecular branch at P0 ¼ kF
decreases through zero, and the ground state changes via a
first-order phase transition (states of different fermion
parity cannot mix). Thus the parity transition discussed
here resembles polaron transitions [37] in which the
ground-state momentum changes abruptly.
Heavy-impurity limit.—We now discuss the crossover

between “light” and “heavy” impurities. For simplicity, we
work in one dimension; here, a Shiba state forms at each
Fermi point. These states are mixed by an interaction
matrix element ∼Eb; however, scattering across the Fermi
surface costs ∼E. This 2 × 2 Shiba subspace has the
Hamiltonian

H ¼
�

1
2M ðP0 − kFÞ2 þ Eb Eb

Eb
1
2M ðP0 þ kFÞ2 þ Eb

�
:

The smallest eigenvalues of H occur for P0 ≃�kF (the
case discussed above) when the recoil is large; for a heavy
impurity, however, the dispersionminimummoves toP0 ¼ 0
[Fig. 4(b)]. A similar crossover occurs in any dimension.
BEC-BCS crossover.—The analysis above assumed

EF ≫ Δ; this is valid in the BCS limit. However, our
qualitative conclusions are based on the observation that
the quasiparticle dispersion has a minimum at some

nonzero momentum k0. This remains true in the unitary
regime but with k0 < kF; therefore, our main results
(in particular, the Mexican-hat dispersion) should extend
to this regime if kF is replaced with k0. Deep in the BEC
regime, the quasiparticle dispersion has a minimum at
k ¼ 0; our results do not apply here.
Experimental implementation.—The system discussed

here can be realized in two-species atomic mixtures in
which at least one species is fermionic. A promising
realization involves Li-Cs mixtures [27,28], in the mag-
netic-field range of 834–900 G. The Li atoms form a BCS
superfluid, while the Cs-Li interaction can be tuned through
various heteronuclear Feshbach resonances [38,39]. The
impurity recoil E ≈ EF=5, while Δ∼ 0.01–0.1 EF [40]. The
molecular dispersion can be directly probed using momen-
tum-resolved radio-frequency spectroscopy, as follows.
Suppose the impurity-fermion scattering length is negative
for ↑ fermions and positive for ↓ fermions. Then ↑
fermions form a Shiba state; moreover, a Feshbach mol-
ecule of the impurity and a ↓ fermion must exist. One can
use a rf pulse to flip the spin state and drive transitions
between the midgap Shiba molecule and the Feshbach
molecule. Because the rf pulse is momentum conserving,
one can map out the dispersion relation of the midgap Shiba
molecules by measuring the momentum of the Feshbach
molecules (through time-of-flight imaging) as a function of
frequency [41,42].
Outlook.—We have argued that a moving magnetic

impurity in a Fermi superfluid can capture a quasiparticle
and form an exotic midgap Shiba molecule with a Mexican-
hat dispersion minimum; as this dispersion minimum maps
out the Fermi surface, one can easily tune its shape by
putting the fermions in an optical lattice. Depending on the
impurity statistics, the molecule can be bosonic or fer-
mionic. Moreover, we expect the intermolecular exchange
interactions to be exotic. Qualitative aspects of these
interactions can be deduced from recent work on pinned
impurities [43,44]. Molecules interact by exchanging either
continuum quasiparticles or Shiba states. Remarkably, for
a moving impurity the Shiba-state exchange interaction
is strongly angle-dependent because the molecular wave
functions are anisotropic, as discussed above: molecules
with center of mass momenta n̂; n̂0 interact more strongly
when n̂∥n̂0 than when n̂⊥n̂0. A quantitative treatment of
these interactions will be given elsewhere. Such inter-
actions make midgap Shiba molecules promising platforms
to study the interplay between spherical dispersions and
structured interactions. Note that a sufficiently high density
of impurities might alter the character of the superfluid,
favoring a modulated gap [45]. Finally, while we discussed
impurities in s-wave superfluids, even more unusual
properties might be realizable with impurities in unconven-
tional (e.g., topologically paired) superfluids [13,46–48].
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