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We present a unified approach to the theory of multimodal laser cavities including a variable amount of
structural disorder. A general mean-field theory is studied for waves in media with variable nonlinearity and
randomness. Phase diagrams are reported in terms of optical power, degree of disorder, and degree of
nonlinearity, tuning between closed and open cavity scenarios. In the thermodynamic limit of infinitely
many modes, the theory predicts four distinct regimes: a continuous wave behavior for low power, a
standard mode-locking laser regime for high power and weak disorder, a random laser for high pumped
power and large disorder, and a novel intermediate regime of phase locking occurring in the presence of
disorder but below the lasing threshold.
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In describing cavityless lasers with randomly placed
scatterers, called random lasers (RLs) [1–11], the chal-
lenging issue is the interplay between disorder and non-
linearity. In RLs, lasing is due to stimulated amplification
spatially localized in leaky stochastic resonators [1]. If
disorder is dominant, the stimulated amplification of light
can be hindered because of diffusion. Conversely, if
structural disorder is weak, the effect on nonlinear evolu-
tion is marginal and does not modify the standard laser
features. Competition occurs when wave scattering affects
the degree of localization and nonlinearity couples the
localized modes. Recent experimental results show that the
coupling of modes changes their localizations and their
spatial and spectral correlations [12–14].
We report a theoretical analysis accounting for the fact

that light modes exhibit a distribution of localization
lengths and an interaction determined by the overall energy.
In a statistical mechanical framework, we predict specific
transitions from incoherent to coherent regimes, both in the
case of standard mode-locking (ML) lasers in a closed
cavity and for cavityless systems with strong gain in
random media. The theory is based on the hypothesis of
effective equilibrium. Lasers are manifestly off equilibrium,
and energy is pumped into the system to maintain pop-
ulation inversion and stimulated emission and, in open
cavities, also to compensate for radiation losses. As power
is kept constant, though, the resulting stationary regime can
be described as if at equilibrium with an effective “thermal
bath” whose “temperature” is related to the pumping rate
and to the environment temperature [15,16].
Lasing in random media displays a glassy coherent

behavior. As glassy we mean that (i) a subset of modes
out of an extensive ensemble of localized passive modes are
activated in a nondeterministic way [17] and (ii) the whole

set of activated modes behaves cooperatively and belongs
to one state out of many possible ones. The system
properties can be represented by a corrugated landscape
composed of many valleys separated by high mountains
and hidden passes. The overall coherence arises from the
trapping in a metastable state in the landscape.
We identify four different phases: continuous wave

(CW), phase-locked wave (PLW), standard ML laser
(SML), and random lasing (RL). In previous work, mode
phases were retained as the only relevant dynamic variables
[9,16]. Here, we remove this “quenched amplitude”
approximation and provide a general picture of the regimes
attainable in a multimodal laser at any degree of pumping,
disorder, and cavity leakage.
The complex amplitude model.—For a closed cavity,

localized modes form a complete set, and the electromag-
netic field Eðr; tÞ can be expanded in terms of normal
modes EnðrÞ with time-dependent complex amplitudes
anðtÞ [16]. In open cavities a continuous spectrum of
radiation modes is also present. The contributions of
radiative and localized modes can be separated by
Feshbach projection onto two orthogonal subspaces [20].
This leads to an effective theory on the subspace of
localized modes in which they exchange a linear effective
damping coupling [21,22]. Radiation losses and gain are
accounted for by additional linear terms, and the presence
of a thermal bath is represented by the fluctuations due to
the spontaneous emission. Nonlinear couplings arise from
gain saturation and from the optical Kerr effect. At
equilibrium with the pump mechanism, the amplitudes
anðtÞ are linked by a constraint given by the total intensity
inside the system E ¼ ϵN ¼ P

N
n¼1 janj2.

Within a semiclassical approach for light propagation
and amplification in nonlinear media and including
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randomness [9,11,16,23] and radiation from open cavities
[21,22,24–26], a general Hamiltonian is derived in the slow
amplitude approximation [9,16,23]

H ¼ −ℜ
�
1

2
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~n2

J~n2an1a
�
n2 þ
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4!
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�
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�
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MLð~n4Þ∶ jωn1 − ωn2 þ ωn3 − ω4j≲ γ; ð1Þ
where ~np ¼ fn1…npg and the ML sum ranges over the sets
of distinct indices ~n4 for which the so-called ML condition
holds, being γ the typical linewidth of the modes.
The coupling J~n4 represents the spatial overlap of the

electromagnetic fields modulated by nonlinear χð3Þ suscep-
tibility

J~n4 ¼
ι

2

Y4
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ωnj
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with αj ¼ x; y; z, and ~α4 ¼ fα1; α2; α3; α4g. The linear
coefficient J~n2 yields different contributions depending
on medium randomness and cavity leakage,

J~n2 ¼ Jinh~n2 þ Jrad~n2 ; ð3Þ

Jinh~n2 ¼ ι

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωn1ωn2

p Z
V
d3rϵ~α2ðrÞEα1

n1ðrÞEα2
n2ðrÞ: ð4Þ

A nonuniform distribution of the dielectric permittivity
tensor ϵðrÞ [27–30] and, possibly, of the gain yields the
spatial overlap of localized eigenmodes Jinh. Besides, in
the “open cavity” scenario, the linear terms also account for
the presence of a continuous spectrum, and they correspond
to the effective damping contribution Jrad [21,22]. In the
“strong cavity limit,” [27] Jrad ¼ 0 by construction and Jinh

is diagonal.
We build a mean-field theory in which the system is fully

connected. This amounts to adopt a “narrow bandwidth”
approximation for the gain profile in which jωj − ωkj < γ,
for each j; k ¼ 1;…; N [9,31–33]. This occurs in the
“dispersive” RLs with very low finesse and a sensitive
narrowing of the bandwidth above threshold [2], in which
many modes oscillate in a relative small bandwidth with
overlapping linewidths. This implies (i) that the net gain is
frequency independent, Jn ¼ gðωnÞ≃ gðω0Þ ¼ g0, and
(ii) that different modes can linearly interact without
changing their frequencies. Because of the latter, we will
consider nonzero off-diagonal elements of the linear
coupling to maintain the most general level of description.
Although in cases of dominant linear coupling of spectrally
distinct modes, the interaction matrix J~n2 can always be
diagonalized, introducing a complete set of left and right
eigenmodes, as done, e.g., in Refs. [34,35]; this is not
granted for all laser systems if resonances are overlapping
and if nonlinearity prevails. More specifically, in our

approach, the nonlinear random coupling is treated non-
perturbatively, because the complex structure of glassy RLs
well above threshold cannot be probed by using perturba-
tion theory to the linear regime.
The open cavity model can be viewed as an extension to

complex variables of the so-called spherical 2þ p model
[36–40], yielding a far richer variety of physical scenarios.
Couplings may, in general, be disordered because modes

display different degree and shape of localizations [41,42].
The constituents of the integrals in Eq. (2) and (4) are very
difficult to calculate from first principles. The only specific
form of the nonlinear susceptibility has been computed
by Lamb [43,44] for few-modes standard lasers, and no
analogue study for RLs has been performed so far, to our
knowledge. Overlap integrals in a disordered system can be
regarded as a sum over many random variables. Different
couplings involving a given mode are, in general, correlated
[26]. Since we work in the limit of an infinite number of
modes and correlations decay with the size of the system,
though, we adopt as working hypothesis a Gaussian
distribution for each J~np ,

PðJ~npÞ ¼
ffiffiffiffiffiffiffiffiffiffi
Np−1

2πJ2p

s
exp

�
−
Np−1

2J2p

�
J~np −

JðpÞ0

Np−1

�2�
; ð5Þ

with p ¼ 2; 4. We stress that, though technically more
committing, considering correlated J’s leads to qualita-
tively analogue phase diagram as well known in spin-glass
systems such as, e.g., the random orthogonal model
[45,46]. To simplify the computation and its presentation,
we will take real-valued interaction couplings. This
amounts, e.g., to neglect of the effect of group velocity
in the diagonal linear part and the Kerr lens effect in the
nonlinear term but does not change the generality of the
qualitative picture. This is the most general Hamiltonian
model for laser systems that one can consider. Adding
further nonlinear terms (J~np with p ¼ 3; 5; 6;…) [33] does
not alter the qualitative behavior at the transition from
continuous wave to lasing regimes.
The external parameters.—In order to yield a compre-

hensive description, we introduce the degrees of non-
linearity α0, α, varying in the interval [0, 1], and suitable
interaction energy scales J0, J, for the ordered and
disordered component, respectively,

Jð4Þ0 ¼ α0J0; α0 ¼
�
Jð2Þ0

Jð4Þ0

þ 1

�−1
; J0 ¼ Jð2Þ0 þ Jð4Þ0 ;

ð6Þ

J4 ¼ αJ; α ¼
�
J2
J4

þ 1

�
−1
; J ¼ J2 þ J4: ð7Þ

The “degree of disorder” of a given system with
coupling parameter scales J, J0 is, then, defined
as RJ ¼ J=J0.
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The average energy per mode ϵ is related to the so-called
“pumping rate” P induced by the pumping laser source in
the RL or proportional to the optical power in the cavity for
the standard laser. In the present Letter it is defined as P ≡
ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0=kBT

p ¼ ϵ
ffiffiffiffiffiffiffi
βJ0

p
where T is the heat-bath temperature.

It encodes the experimental evidence that decreasing the
temperature [47] or increasing the total power [48] yields
qualitatively similar behaviors. As mentioned in the intro-
duction, 1=P2 ∝ T=ϵ2 plays the role of the temperature of the
effective thermal bath with which the system is at equilib-
rium. The proportionality factor J0 is a material-dependent
parameter function of the central angular frequency ω0,
cf. Eq. (2), and it is volume independent.
To summarize, the parameters of interest are

Optical power per mode ϵ

Heat-bath thermal energy kBT ¼ 1=β

Cumulative coupling average J0 ¼ Jð2Þ0 þ Jð4Þ0

Cumulative mean square disp. J ¼ J2 þ J4
Pumping rate P ¼ ϵ

ffiffiffiffiffiffiffi
βJ0

p
Disorder degree RJ ¼ J=J0
Nonlinearity degree (ordered) α0 ¼ Jð4Þ0 =J0
Nonlinearity degree (disordered) α ¼ J4=J.

We will consider here α ¼ α0 for simplicity, but cases with
different degrees of nonlinearity in ordered and disordered
contributions can be also analyzed.
Statistical mechanics with replicas.—We study the

model by means of the replica trick [49]. This enables
us to calculate the average free energy f in the one-step
replica symmetry-breaking (1RSB) ansatz as a function
of generalized order parameters, as detailed in the
Supplemental Material [50]. We find a series of order
parameters describing the physical regimes: (i) the intensity
coherence of activated modes m, (ii) the phase coherence
rd, (iii) and (iv) the overlap parameters q0;1, and (v) the
RSB parameter x. The latter three specify degree and kind
of glassiness. The free energy reads

2βfðq0; q1; rd; mÞ ¼ 2βf0 þ ð1 − xÞwðq1; q1Þ
þ xwðq0; q0Þ − wðrd; 1Þ
− 2kðmÞ − lnð1 − rdÞ

− lnX1 −
1

x
ln
X0

X1

−
2q0 −m2

X0

ð8Þ

with

X1 ≡ 1þ rd − 2q1; X0 ≡ X1 þ 2xðq1 − q0Þ; ð9Þ

wðt; uÞ≡ ξ2ðt2 þ u2Þ þ ξ4
2
ðt4 þ u4 þ 4t2u2Þ; ð10Þ

kðmÞ≡ k2jmj2 þ k4jmj4; ð11Þ

ξ2 ¼
β2ϵ2

4
J22; ξ4 ¼

β2ϵ4

6
J24; ð12Þ

k2 ¼
βϵ

4
Jð2Þ0 ; k4 ¼

βϵ2

96
Jð4Þ0 : ð13Þ

The self-consistency equations for the order parameters
are given in the Supplemental Material [50]. These deter-
mine all relevant thermodynamic phases, as displayed in
the phase diagrams reported in Fig. 1.
Continuous wave regime: For small optical power, all

modes oscillate independently in a CW incoherent noisy
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FIG. 1 (color online). Phase diagrams in the (P2, RJ , α ¼ α0)
space. For low disorder, only the SML and CW phases occur,
varying pumping and degree of linearity. As disorder increases, the
intermediate PLW phase arises between CW and SML. For strong
disorder, RL replaces SML above the pumping threshold line. For
any RJ, for low α0 the transition driven by P is continuous in the
order parameters, whereas for high nonlinearity (α>αnl¼0.6297)
it is discontinuous. Insets: phase diagrams in the (P2, RJ) plane
for closed (α ¼ α0 ¼ 1) and open (α ¼ α0 ¼ 0.4) cavities.
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regime and the energy equally fluctuates among all passive
modes. At low P, for any degree of quenched disorder RJ
and nonlinearity α, all parameters are q01 ¼ m ¼ rd ¼ 0
(x is irrelevant when q0 ¼ q1).
Phase locking wave regime: For RJ > 0, on increasing P

the system undergoes a transition to a thermodynamic
phase in which the mode phases lock on one given value,
without stimulated amplification. Considering complex
amplitudes as planar continuous spherical spins, this
corresponds to all spins pointing in the same direction,
though their intensity is freely oscillating. This phase has
no counterpart in statistical mechanical models studied so
far. Phase coherence rd is nonzero, whereas q0;1 ¼ m ¼ 0.
With an increasing nonlinearity α, PLW occurs at a lower
and lower pumping rate P.
Standard mode-locking laser: For large P and RJ ¼ 0, a

localization transition occurs and the intensity is shared by
activated modes, all of them oscillating coherently. This
corresponds to standard passive ML lasers [55], where a
passive transition in P is predicted as a paramagnetic-
ferromagnetic transition in Ref. [56,57]. We further find
that the CW/SML transition takes place also in the presence
of a limited amount of disorder RJ ≳ 0. In this regime
m ≠ 0: modes are coherent in intensity and stimulated
amplification occurs.
Random lasing: For high pumping rate and strong

disorder, synchronous oscillations are frustrated, resulting
in a glassy phase representing the RL regime. Modes are all
coherent in phase (rd ≠ 0) but not in intensity (m ¼ 0). In
the glass phase, RSB occurs: q1 > q0 ¼ 0 and x ≠ 0; see
the Supplemental Material [50] for details.
Phase diagram.—In Fig. 1 we show the P2, α, RJ

diagram in the main three-dimensional plot. In the top inset
the closed cavity projection for α ¼ 1 is displayed, and in
the bottom inset an open cavity instance α ¼ 0.4 is
displayed.
For low degree of disorder RJ, there is a threshold

between a CW (or PLW) phase and a SML; for large RJ the
threshold is to a RL. The CW/SML threshold line is plotted
as a solid (continuous transition) or a dotted (discontinuous
transition) dark (red) line, and it occurs for RJ ≳ 0. The
locus of tricritical (SML,CW,PWL) transition points is
plotted as a black dashed-dotted line.
As RJ is still small but a bit larger than the tricritical

point, on increasing the pumping one first has a CW/PWL
transition denoted by a continuous light gray (green) line
and then a PWL/SML. The latter can be continuous (solid
dark-gray/red line) or discontinuous (dotted line).
For larger RJ we exclusively observe PWL/RL transi-

tion. The nature of the PWL/RL transition depends on the
degree of nonlinearity; it occurs both continuously, for
α < αnl, and discontinuously, for α > αnl (Supplemental
Material [50]).
Supposing, furthermore, that in an optically active material

the degree of disorder RJ could be continuously changed, the
phase diagram also predicts a transition between SML and

RL for pumping above threshold, represented by the nearly
vertical solid (blue) transition lines (Fig. 1). The locus of the
tricritical points RL/SML/PWL is plotted as a second black
dashed-dotted line in the main plot.
Mode locking without saturable absorber.—A key point

in the present study is that the transition from continuous
wave to standard passive mode-locking (CW → SML) only
occurs for a strictly positive value of the coupling coefficient
J0, as shown in Figs. 1 and 2. This formally corresponds to
the presence of a saturable absorber in the cavity [16]. In RLs
such a device is not present, and hence, the occurrence of this
lasing transition is not to be taken for granted. However, in
Fig. 1 it is shown that on starting from a standard laser
supporting passive mode locking and increasing the disorder,
the CW/SML transition acquires the character of a glassy
mode-locking CW/RL transition. This is also present for
J0 < 0, as explicitly shown in Fig. 2. It is far from trivial that
the latter mode-locking transition, ruled out for ordered
lasers without a saturable absorber (J ≪ J0), spontaneously
occurs as an effect of the quenched disorder, i.e., for large
enough RJ. The physical origin is the mode coupling due to
the open cavity configuration.
Conclusions.—We developed a theory for light wave

systems in optically active random media with narrow
bandwidth and in which all activated mode localizations
spatially overlap each other. The theory is based on the most
general Hamiltonian for an open system, including non-
linearity and coupling to a thermal bath, effectively repre-
senting the energy transfer to the system by an external
pumping keeping the total power constant. This corresponds
to a mean field fully connected disordered system in
statistical mechanics. We derive the most general phase
diagram, ranging from closed cavities that correspond to a
standard laser, to completely open cavities, representing the
random lasers. The resulting picture, given in terms of order
parameters for correlations among amplitudes, phases, and
their cross correlation, furnishes a number of different
equilibrium phases affected by nonlinearity and disorder.
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These include standard passive-mode locking in standard
lasers and different coherent regimes attainable in random
lasers. The reported results open the way to further inves-
tigations, as the study of open quantum systems, testing
theoreticalmodels for the statisticalmechanics of disordered
systems, employing variable coherence sources for appli-
cations in spectroscopy and microscopy, and developing
novel techniques for mode locking and ultrashort pulse
generation not requiring saturable absorbers.
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