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We have produced and characterized spin-squeezed states at a temperature of 26 °C in a nuclear magnetic
resonance quadrupolar system. The experiment was carried out on 133Cs nuclei of spin I ¼ 7=2 in a sample of
lyotropic liquid crystal. The source of spin squeezing was identified as the interaction between the quadrupole
moment of the nuclei and the electric field gradients present within the molecules. We use the spin angular
momentum representation to describe formally the nonlinear operators that produce the spin squeezing on a
Hilbert space of dimension 2I þ 1 ¼ 8. The quantitative and qualitative characterization of this spin-
squeezing phenomenon is expressed by a squeezing parameter and squeezing angle developed for the two-
mode Bose-Einstein condensate system, as well as by the Wigner quasiprobability distribution function. The
generality of the present experimental scheme points to potential applications in solid-state physics.
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The role of nonclassical states in atomic physics and
optics has been extensively investigated in the last two
decades [1–3]. A great deal of this interest is due to the
collective behavior of atoms in the so-called spin-squeezed
state. Quantum states of this kind were first studied in
relation to the production of atom-atom entanglement by
means of a nonlinear spin-spin interaction [4,5]—the one-
axis twisting (OAT) model. Since then, many theoretical
developments [[6–8], [9–17]] have led to various applica-
tions in the domain of quantum information processing,
such as proposals for spin squeezing to be exploited in
quantum entanglement [8,18–20], in quantum metrology,
where the idea of a fundamental noise limit set by quantum-
mechanical laws is explored [15,21], and in atom chip
based investigations [22].
In parallel, several experimental observations [21–36] of

spin-squeezed states have been achieved mainly in many-
body atom-light interaction scenarios involving collective
spin in an ensemble of N atoms. Particularly, important
experiments of this type were performed with a cesium
atom ensemble [24,27]. In these, the hyperfine ground
states F ¼ 3 and F ¼ 4 were exploited in Hilbert spaces of
dimension ð2F þ 1Þ ¼ 7 and 9. Such an approach matches
a low dimensionality regime, which may be extended to
nuclear quadrupolar systems and qubits in solid-state
physics [17,35]. On this behalf, the present experimental
development is a way to bring atomic and solid state
physics closer to the general purpose of producing, in the
near future, a quantum computer. Particularly, solid state
systems could be used efficiently on a quantum computer
as data storage devices. To achieve this, the formalism
and procedures presented here are of general applicability
to any physical system that explores the concepts of
quadrupolar nuclei in solid state NMR.

The route followed in this Letter to achieve spin
squeezing is to investigate a quadrupolar NMR system,
with nuclear spin 7=2, and characterize the squeezed states
through a squeezing parameter and squeezing angle, as well
as by the Wigner quasiprobability distribution function. In
our system, it is the physical nature of the quadrupolar
nuclei that leads to the spin-squeezed states. Essentially, the
inherent electric field gradients in a quadrupolar system
evolving in the NMR setup produce the signal that indicates
spin squeezing. This is basically different, for example,
from the liquid state NMR simulation in [37], where spin
1=2 constituents with a scalar coupling are refocused by
appropriate pulses. Here, we use a liquid-crystal platform
that, within the NMR framework, allows control of the
quantum-level couplings of nuclei and the collective
behavior of molecules, so as to compensate for thermal
vibrations in order to execute an efficient experimental
implementation. Our experimental tasks can be carried out
by invoking the concept of coherent states, one- and two-
mode BEC-like systems, protocols of classical bifurcation
developed in [38–40] and protocols of quantum informa-
tion processing [41–46].
To be more specific, part of the theoretical framework

that we use comes from studies of the two-mode BEC
system [11–14]. In these, in order to reach a spin-squeezed
state, an OAT model is implemented. The associated
Hamiltonian is also known as the two-site Bose-Hubbard
model and the particle description can be mapped on to an
angular momentum description, by using the Schwinger
representation. More specifically, it is possible to map a
Hamiltonian described in terms of creation â†i and anni-
hilation âi operators, satisfying the commutation relations
½âi; â†j � ¼ δij (i; j ¼ 1; 2), on to an angular momentum
algebraic realization [1,3,6,11,13,14,47], with operators
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that obey the commutation relations ½Îi; Îj� ¼ iℏϵijkÎk
(i; j; k ¼ x; y; z). Here we must make the following dis-
tinction: in the NMR framework, the operator Î refers to the
internal nuclear spin angular momentum. A related dis-
cussion about squeezing has been carried out in a quantum
dots system, where it arises from the nuclear-electron
interaction [16]. The common formalism used in these
investigations is the collective spin representation. We are
interested in the internal nuclei spin, and the relevance of
those results to our case is that it is possible to explore an
equivalent formalism in the context of NMR quadrupolar
nuclei. Here , the OAT model comes from an analogous
term given by a quadratic nuclear spin angular momentum
operator along the z axis in the NMR quadrupolar
Hamiltonian. In this light, we report here the experimental
observation of the dynamics of spin squeezing in a NMR
quadrupolar system in a lyotropic liquid crystal sample held
at a temperature of 26 °C in order to keep the liquid
crystalline phase stable.
A spin-squeezed state can be reached by means of an

interaction that depends nonlinearly on Cartesian orbital
angular momentum components, for which În ¼ n·
ðÎx; Îy; ÎzÞ, perpendicular to the mean spin hÎi. This
procedure is used with the OAT model [5,24] or the
two-axis countertwisting model [5,27]. The OAT model,
as we approach it here, is applied to the description of
internal nuclei spin [17,27], and is characterized by a
quadratic term in the z component of the orbital angular
momentum κÎ2z , where κ is the strength of this interaction.
We start from a coherent spin state ji; iix, which corre-
sponds to a symmetric quasiprobability distribution on the
spherical phase space around the x axis, and then, after a
transformation, it appears squeezed in the y-z plane in a
rotated y0-z0 basis [27].
To quantify the degree of squeezing, we adopt the criteria

of Ref. [11–13], developed from Ref. [5], so that the
parameter of squeezing is defined by ξ ¼ ðΔÎnÞmin=

ffiffiffiffiffiffiffi
I=2

p
,

where ðΔÎnÞmin represents the smallest variance of a spin
component În normal to the mean spin hÎi; specifically,

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
C − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

pq
ffiffiffiffiffiffiffi
I=2

p < 1; and ð1Þ

αξ ¼
1

2
arctan ðB=AÞ; ð2Þ

where I is the nuclear spin (I ¼ 7=2 for 133Cs),
A ¼ hÎ2z − Î2yi, B ¼ hÎzÎy þ ÎyÎzi, and C ¼ hÎ2z þ Î2yi are
appropriate combinations of spin components Îz and Îy,
chosen with respect to the orientation of n, in this case
along x. αξ is the squeezing angle, which is a geometrical
property that characterizes the orientation of the squeezing
[12,13]. The expression in Eq. (1) differs from a more
general expression [see Eq. (2) in [18]]. Whereas Eq. (1) is
capable of detecting squeezing, it fails to detect entangle-
ment, as Eq. (2) in [18] does. The issue of entanglement and

other quantum correlations in NMR experiments have
been addressed in various publications [48,49], but this
is not the purpose of the present Letter, since our system is
composed of noninteracting quadrupole nuclei in a liquid
crystal (see below).
The NMR formalism for any quadrupolar system is

based on a nuclear spin I > 1=2 andm ¼ I; I − 1;…;−I as
its quantization rule. The laboratory frame representation
is used to set up the Hamiltonian, with basically four
kinds of contribution: the first is the Zeeman term, due to
the interaction of the nuclear magnetic moment
−ℏγðÎx; Îy; ÎzÞ with a strong static magnetic field B0

aligned in the z direction. This first contribution is
expressed by −ℏγB0Îz, where γ is the gyromagnetic ratio
of the nuclear species and ℏ is the reduced Planck’s
constant. The second is the effective quadrupolar term
[50], which arises from the interaction of the quadrupole
moment (Q) of the nuclei with the electric field gradient
internally present in the sample (Vα;β). It is expressed as
eQ=ð4Ið2I − 1ÞÞðVzzð3Î2z − Î2Þ þ ðVxx − VyyÞðÎ2x − Î2yÞÞ,
and the electric field gradient satisfies the Laplace’s
equation

P
αVαα ¼ 0. In an ordered nuclear system with

axial symmetry the condition jVxxj ≈ jVyyj ≪ jVzzj is
satisfied. This allows us to simplify the second contribution
to the form, eQVzz=ð4Ið2I − 1ÞÞð3Î2z − Î2Þ. This term will
be the generator of the nuclear spin-squeezed state. The
third is the radio-frequency (rf) term, due to the interac-
tion of the nuclear magnetic moment with a time-
dependent external magnetic field perturbation B1ðtÞ ¼
B1( cos ðωrftþ ϕÞ; sin ðωrftþ ϕÞ; 0) perpendicular to the
strong static magnetic field B0. Finally, the fourth term is
due to contributions from the environment (Henv) and
represents effective weak interactions with other nuclear
species, electrons, field fluctuations, and so on [49]. In a
rotating frame representation, the total NMR Hamiltonian
is thus described by

HNMR ¼ −ℏðωL − ωrfÞÎz þ ℏ
ωQ

6
ð3Î2z − Î2Þ

þ ℏω1ðÎx cosϕþ Îy sinϕÞ þH0
env; ð3Þ

where ωQ ¼ 3eQVzz=ð2Ið2I − 1ÞℏÞ is the quadrupolar
coupling, ω1 ¼ γB1 the rf strength, and ωL ¼ γB0 the
Larmor frequency of the nuclear species. The coupling
parameters of our physical quadrupolar system satisfy the
inequality jωQj ≪ jωLj.
Let us set ωrf ¼ ωL and ϕ ¼ 0 to transform the NMR

Hamiltonian into Hamiltonian (1) of Ref. [13], which
corresponds to the one-axis twisting model (when
ω1 ¼ 0) of spin squeezing, after dropping the constant term
−ðℏωQ=6ÞÎ2. The Hamiltonian for the experimental setup is

Hs
NMR ¼ ℏωQ

2
Î2z : ð4Þ

Before going into some of the details, we offer the
following intuitive account of what happens in this
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experiment: Our sample is subject to a strong magnetic
field such that the nuclear spins are polarized. By an
appropriate choice of radio frequency fields we then reach
an initial state, which will be transformed by Hamiltonian
(4); owing to these changes, the nuclear spin precesses and
produces a characteristic signal, from which we can, by
using quantum state tomography, obtain the associated
density matrix. The free evolution of the state under (4)
produces the squeezing; an extended experimental descrip-
tion can be found in the Supplemental Material [51].
The NMR experimental setup employs cesium nuclei

(133Cs) with quadrupolar spin system I ¼ 7=2, making the
dimension of the Hilbert space d ¼ 2I þ 1 ¼ 8. A lyo-
tropic liquid crystal sample was prepared with 42.5 wt%
cesium-pentadecafluorooctanoate (Cs-PFO) and 57.5 wt%
deuterated water (D2O). The experiment was carried out in
a Varian 500 MHz spectrometer with a 5 mm probe for
liquids. The Larmor and quadrupolar frequencies of 133Cs
nuclei are, respectively, ωL=2π ¼ 65.598 MHz and
ωQ=2π ¼ 7.58 kHz. The length of the π pulse was cali-
brated at 26 μs. The transverse and longitudinal relaxation
times are T2 ≈ 30 ms and T1 ≈ 650 ms, respectively. The
recycle delay time is 3.5 s.
To describe a quantum state in a NMR system, we use the

density operator at thermal equilibrium, in which popula-
tions are represented by the Boltzman-Gibbs distribution.
The density operator is denoted by ρ ¼ ð1=ZÞ1̂þ ϵρ0,
where ϵ ¼ ωLℏ=kBTZ is the polarization value (∼10−6),
kB is Boltzmann’s constant, T the room temperature (in our
case 26 °C), Z the partition function, and ρ0 ¼ Îz the
deviation density matrix [49]. The deviation density matrix
is transformed by a method adapted from the strongly
modulating pulse technique, in order to achieve a nuclear
spin coherent state NSCS, the equivalent of the so-called
pseudopure state [39,49] in a NMRqubit system jζðθ; φÞi ¼P

I
m¼−I ð 2I

IþmÞ1=2 cosðθ=2ÞI−m sinðθ=2ÞIþm e−iðIþmÞφjI; mi,
where jI; mi are eigenstates of Îz with eigenvaluem [39,40].
The density operator changes to ρ ¼ ðð1 − ϵÞ=ZÞ1̂þ
ϵΔρ, such that Δρ≡ jζðθ;φÞihζðθ;φÞj is the deviation
density operator, for any 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π
[39,51]. Specifically, by choosing θ0 ¼ π=2 and φ0 ¼ π,
we implement the initial quantum state, denoted by
jζðπ=2; πÞi, such that it is suitable to implement the spin-
squeezing protocol [11–13]. Following the nuclear spin-
squeezing protocol, the jζðπ=2; πÞi evolves by application of
the operator defined by exp ½−iHs

NMRτk=ℏ�, in 44 time steps
of τkþ1 − τk ¼ 3 μs, with k ¼ 0; 1;…; 44, so that the
discrete τk ∈ ½0; 132 μs�. The readout at each time step of
the evolved initial quantum state is performed by quantum
state tomography [51].
The efficiency of the implementation of jζðπ=2; πÞi and

its time evolution can be estimated by means of the Wigner
quasiprobability distribution function, which is applied to
the experimental deviation density matrix of the tomo-
graphed quantum state jζðθk;φkÞi. Thus, by definition, we
have [67–69]

Wðθ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2I þ 1

4π

r X2I
K¼0

XK
Q¼−K

ϱKQðθ;φ; θk;φkÞYKQðθ;φÞ;

ð5Þ
for θ ∈ ½0; π� and φ ∈ ½0; 2π�, where ϱKQðθ;φ; θk;φkÞ ¼
Trθ;φfjζðθk;φkÞihζðθk;φkÞjT̂†

KQg, T̂KQ being the spherical
tensor operators (or irreducible tensor operators [67–69])
and YKQðθ;φÞ the spherical harmonics.
Next, we analyze the 4th tomographed quantum state with

the Wigner formalism for the theoretical prediction [top of
Fig. 1(a)] and experimental results [top of Fig. 1(b)]. We can
observe the qualitative signature of the spin-squeezing
phenomenon, depicting the compression of the probability
distribution in the direction denoted by the arrows contained
in the y-z plane. Analogously, we show the same phase space
at the 17th time step, where the squeezing effect is
attenuated, but at the 40th time step the squeezing effect
is recovered. Finally, at the 44th time step, we can observe
from the shape of the probability distribution that the
squeezing cycle has been completed and a new one has
started. From that set of figures, we observe a correspon-
dence between a description following the theoretical devel-
opment of the matrix operators and a free evolution of the
nuclear spins, monitored by quantum state tomography.
We also investigate the dynamics of the squeezing

parameter (ξ), computed by Eq. (1), finding that the system
evolves under spin squeezing as shown in Fig. 1(c), where a
periodic behavior is seen, which may also arise in collapse
and revival phenomena [70–72]. Theoretical results (black
solid line) are generated by transforming a theoretical initial
NSCS jζðπ=2; πÞi under the evolution operator that
depends on the Hamiltonian Hs

NMR, using numerical
calculations for any τ ∈ ½0; 132 μs�. Experimental results
(dark green dots) are computed at 44 steps from the
tomographed deviation density matrix, such that
τk ∈ ½0; 132 μs�. Note that the evolution of the spin
squeezing has a periodic behavior, which depends on the
inverse of the quadrupolar frequency ν−1Q ¼ 132 μs, and
that it matches the choice of time window used to monitor
the spin system. The error bars for each experimental dot
represents an error of ∼10% (see [51] for a detailed
discussion). Similarly, we analyze the evolution of the
squeezing angle, Eq. (2), which is plotted over the same
time window in Fig. 1(d). The theoretical prediction (black
solid line) starts at a value of π=4 and falls monotonically to
−π=4, coinciding with the end of the periodical behavior of
the spin system, which then starts a new cycle. Precisely at
this time there is a discontinuity in the squeezing angle,
which switches from the negative value back to the positive
value. Experimental data (dark green dots) follow closely
the solid line computed by the theoretical procedure.
To conclude, we have accomplished, in a liquid-crystal

NMR quadrupolar nuclear spin system, an experimental
characterization of a spin-squeezing process by adopting a
one-axis twistinglike model [5,24] in a regime of low
dimensionality. The theoretical framework established in
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the atomic physics formalism for symmetrical traps of two-
mode BECs is applied to the case of nuclear spin systems,
with respect to their algebraic structure and commutation
rules. The spin-squeezing process is generated in a natural
way in NMR experiments by quadrupolar nuclei. We
observed this process by monitoring the free evolution
of a nuclear quadrupolar spin system, exploiting inherent
physical properties of the nuclei, such as the quadrupole
moment and electric field gradient interaction, and not by
the interaction between spins. We use an ensemble of Cs-
PFO molecules in which single quadrupolar nuclei are used
to attain our objective, so that just one nucleus “mimics” the
effect of seven particles in a two-mode BEC. This is one of
the strong points of our investigation, because in most cases
it is challenging to manipulate few particles coherently.
Also, we conjecture that this low effective number of
particles is what allows us to see explicitly the collapse
and revival features appearing in Fig. 1(c). Although our
experimental setup runs at room temperature, the pure part
of the density matrix, which is proportional to ϵ, holds the
quantum behavior of the nuclear spin system and indicates
this squeezing phenomenon. In our view, the main chal-
lenge is to keep many particles correlated efficiently for a
long time as it happens in cold atoms. From this point of
view, we are showing that there are some molecular
systems that share features similar to those of ultracold
atoms and, as a benchmark, we present a study on squeezed
states. Also, there is a growing interest in the physics of the
two-site Bose-Hubbard model, which is, in terms of
angular momentum, formally identical to the system
investigated here, so that we expect our approach to be
useful for the discussion of such phenomena as tunneling,
Bose-Einstein condensates in periodic potentials, the
Josephson effect, and topological excitations.
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FIG. 1 (color online). Experimental results of spin squeezing under the one-axis twisting model. The NSCS jζðπ=2; πÞi was evolved
under the Hamiltonian Hs

NMR. The dynamics of spins was monitored in time steps of δτ ¼ 3 μs over the time interval [0; ν−1Q ].
(a) Theoretical Wigner quasiprobability distribution function computed from a density matrix at time steps τk, where k ¼ 4; 17; 40, and
44. (b) Experimental Wigner quasiprobability distribution function calculated from the tomographed density matrix. (c) Dynamics of the
squeezing parameter (ξ) from theoretical prediction (black solid line) and experimental results (dark green dots). The error bars are
discussed in [51]. Blue open circles correspond to analysis of the Wigner quasiprobability distribution function of (a) and (b).
(d) Dynamics of the squeezing angle (αξ).
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