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We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice
in momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on
electromagnetically induced transparency (EIT). For a one-dimensional SL, we need the coupling field of
the EIT system to be a standing wave. The detuning between the two components of the standing wave
introduces an effective uniform force in momentum space. The quantum lattice dynamics, such as Bloch
oscillations, Wannier-Stark ladders, Bloch band collapsing, and dynamic localization can be observed in
the SL. The two-dimensional SL provides a flexible platform for Dirac physics in graphene. The SL can be
extended to three and higher dimensions where no analogous real space lattices exist with new physics
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waiting to be explored.
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Introduction.—Since the early days of quantum mechan-
ics, the periodic lattice has been a platform for many
quantum phenomena of electrons, such as Bloch oscillations
[1,2], Wannier-Stark ladders [3], and dynamic localization
[4,5]. Bloch oscillations and Wannier-Stark ladders have
been observed in superlattices [6,7] and optical lattices [8,9].
The evidence of dynamic localization and Bloch band
collapsing [10] under time-periodic forces was also observed
in optical lattices [11-13] and photonic structures [14]. The
related Floquet lattice phenomena include quantum phase
transitions [15—-18], Majorana fermions [19,20], topological
insulators [21-23], artificial gauge potentials [24-27], and
edge states [28,29]. Apart from these nonrelativistic physics,
graphene [30] provides a new stage of relativistic Dirac
physics [31] in two-dimensional lattices. Nevertheless, the
observation of these phenomena remains challenging. Novel
types of lattices [32—35] provide new testing grounds for the
rich physics mentioned above.

In this Letter, we introduce the concept of the super-
radiance lattice (SL), a lattice in momentum space [36]. The
conventional lattice has discrete translational symmetry
in position space. The tight-binding model, which allows
electron hopping between nearest neighbors, is diagonal
in momentum space. The crystal momentum k is a good
quantum number labeling each eigenstate. On the other
hand, the SL corresponds to a tight-binding model in
momentum space that has good quantum numbers r in
position space. The dynamics of r in a SL is analogous to
the dynamics of k in a real space lattice. We show that
Bloch oscillations, Wannier Stark ladders, and Bloch band
collapsing can be observed in a SL based on electromag-
netically induced transparency (EIT). The two-dimensional
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SL provides a tunable quantum optics model for Dirac
physics in graphene.

The momentum transfer between a single two-level atom
and standing wave light is quantized. The states of the atom
with quantized recoil momenta thus have discrete transla-
tional symmetry in momentum space [36]. To inhibit the
recoil motions, we can use fixed three-level systems in
solids, which effectively have infinite mass thanks to the
Lamb-Mossbauer effect [37-39]. The phase correlations of
the timed Dicke states, rather than the recoil momenta of
single atoms, set the lattice points in momentum space.

Dicke spinor.—A collection of N two-level atoms
coupled by a single electromagnetic (EM) mode is
described by the Dicke model [40]. If the atoms are
randomly distributed in an area much larger than the
wavelength, the first excited state, which is the timed
Dicke state [41], can record the momentum of the absorbed
photon via phase correlations between excited atoms

ik,r,

1 N
) == e
)=

gl’g2""ﬂea""’gN>' (1)

Here k , is the wave vector of the photon, r, is the position
of the ath atom, which has the ground state |g,) and excited
state |e,). The atomic levels are shown in the inset of
Fig. 1(a). Now we apply another EM plane wave mode k
that couples |e) to a metastable state |m) via the interaction
Hamiltonian (in the rotating wave approximation) H; =
=S N hkjaje®iTele,)(m,| + H.c., where a; is the anni-
hilation operator of mode k; and x; is the vacuum coupling
strength (assumed to be real). Then |ey . n;) is coupled to
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FIG. 1 (color online). (a) The real space configuration and the
internal atomic states of a 1D bipartite SL. in momentum space.
An EM plane wave mode k,, collectively excites the transition
from |g) to |e). The standing wave formed by modes k; and k,
couples the transition between |e) and |m). (b) The 1D bipartite
SL in momentum space. The red (blue) circles represent the |my )
(|ex)) states. The solid (dashed) lines represent the interaction via
mode k; (k»). The distance between the adjacent sites is |k, | and
the direction of k, is defined to the right.

|mx,—k,,n1 + 1), where n; is the photon number of mode
k; and [my _y,) is defined by replacing e with m in Eq. (1).
The Rabi frequency k;+/n; + 1 is independent of the atom
number N. The two states |ekp,n1> and |mkp_kl,n1 +1)
form a two-component Dicke spinor.

1D bipartite SL.—By introducing a second mode

k, = —k;, the interaction Hamiltonian
N
H, =— Z Ak a,e™ T + kya,e™2 ) e, ) (m,| + H.c.
a=1

(2)

extends the Dicke spinor to a one-dimensional (1D) bipartite
SL, as shown in Fig. 1(a). The state |ekp,n1,n2> can be
coupled either by mode k; to |mkp_kl,n1 + 1,n,), or by
mode k, to |mkp+k] , 11,1y + 1), as shown in Fig. 1(b). The
Rabi frequencies are site dependent. However, if the two

fields are in coherent states with large average photon
numbers (n;) > 1 (i =1,2), the Rabi frequencies are

approximately constant Q; = k;+/(n;). We can rewrite the
interaction Hamiltonian in Eq. (2) into a tight-binding form

Hy ==Y (hQelm; + hQy, 2;) + He..  (3)

N
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with |G) = |g1, g5, .-, gn) the ground state and the super-
radiant states [ex iojx,) = ?3;|G>. The Hamiltonian in

Eq. (3) is also valid for many excitations if the excitation
number is much less than the atom number, and the operators
are approximately bosonic, [¢;, e T = ;i

The tight-binding model in momentum space is diagonal
in its reciprocal position space. For simplicity, we let
Q, = Q,. The dispersion relation is

€.(r) = £2nQ cos(r - k), (5)

as shown in Fig. 2(a). The energy band is directly shown by
the interference pattern of the coupling standing wave.

Detection by the standing wave coupled EIT.—Levels |e)
and |m) are resonantly coupled by EM modes k| = k%
and k, = —k; . A weak field k, = k,X that probes the
transition from the ground state |g) to level |e) should
create excitations in the 1D SL. The density of states (DOS)
of the SL D(€) = N/m\/ €2y — € With €, = 2AQ, can
therefore be tested by the absorption spectrum of k ,, which

on the other hand can be obtained from the imaginary part
of the EIT susceptibility [42,43]

3ENT(A, — iy')
~i) (B, — ip) — | Qe Qpe

Here N is the number of atoms in the volume ¢/ a)eg, where
@, is the transition frequency between |e) and |g). y and I’
are the decoherence rate and radiative decay rate between |e)
and |g), respectively. ' is the decoherence rate between |g)
and |m). A, = w,, — v, is the detuning of the probe field.

The absorption in Eq. (6) is periodic in space. The total
absorption spectrum can be obtained by averaging Eq. (6)
over one period

k 7/2k
A(l/p)oclm[ 1/ ‘

4 (n/2ky)

=3 (6

;((x)dx] . (7)

In Fig. 2(b), we plotted the density of states D and the
absorption spectrum A. Their overlap demonstrates the
equivalence between the 1D SL and the standing wave
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FIG. 2 (color online). (a) The dispersion relation of a 1D SL.
(b) The DOS of the SL (black solid) and the standing wave
coupled EIT absorption spectrum (red dash). y = 0.06 Q,,
¥’ = 0. Assuming that each eigenstate has a finite lifetime, the
DOS is Lorentzian broadened with width 0.01¢,,,, to fit with the
EIT absorption spectrum.
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coupled EIT. The major difference is that the absorption
spectrum A has a transparency point at zero detuning due
to the Fano interference [50,51].

Effective force in momentum space.—An effective uni-
form force in a SL should introduce a potential linear with
the momenta of the sites. From Fig. 1(b), we see that the
superradiant states are correlated with photon numbers that
are linear with the momenta. We therefore can introduce an
effective uniform force in momentum space by changing
the energy of the photons of the two modes. The unper-
turbed Hamiltonian is

N
HO = Zh(we|ea><e(l| + wm|ma><ma ) + hyla-{al
a=1
+ fwza;az, (8)

where hw; (i = e,m) is the atomic eigenenergy and v;
(i = 1,2) is the angular frequency of the fields. The energy
difference between [ey ,n;,ny) and |[my i, ny + 1,ny) is
nho, = hw,,, — vy, where w,,, = o, — @,,, and the energy
difference between |ekp, ny,ny) and |mkp+kI iy, + 1) s
hé, = hw,,, — hv,. The quantity A8y = hw,,, —3 (v +v,)
is the energy difference between the two sublattices of |e)
and |m). The detuning between the two fields 26 = v; — v,
is the potential difference between adjacent unit cells. The
potential is linear of the momentum p = 7k = —ih)_,V, ,

V(p) =-F -p, )

where the momentum-space force F =-V,V(p)=

(8/k))k, is analogue to the real-space force [9,10,13,
14,43]. Therefore, the effective Hamiltonian is

H =" "n(8,—2j6)eje; — h(2j — 1)} n;
J

— (hQ el + hQym|, ; + H.c.). (10)

The equation of motion of the position operator r,, of the
ath atom is

. 1 0 ~
= —[rp—F pl=-F = ——k,. 11
Iy ih[ra’ F p] kl 1 ( )

It is easy to understand this equation in real space. The
detuning 6 leads to a moving standing wave with velocity
—r,. By adiabatic following, the position r, will move with
the velocity r,. After time T = z/5, the standing wave
moves a period 4,/2 = n/k; and the system recovers its
original state, which is the Bloch oscillation in the SL.
Bloch band collapsing.—If the effective force F =
F(t)X is periodic in time, the band collapsing may occur
[5,10,52]. We make the frequencies of the two fields time

dependent, v; + A; cosv,t (i = 1,2), which introduces an
oscillating force in the SL. In particular for 6; = =6, = ny,
with integer n and A, = —A,, the excitation in the SL is
driven by an effective force F (1) = F, + F,cos vt with
static component F; = —nv,/k; and dynamic component
F 4= A,/k,. The quasienergy band is [52]

€(x) = £2Q1J,,(f) cos(xky ), (12)

where J,,(f) is the nth order Bessel function of the first
kind and f = A, /v,. One interesting feature of this Floquet
quasienergy band is that it collapses at the zeros of J,,(f).

Figure 3(a) shows the EIT absorption spectra associated
with the quasienergy bands for n = 0 [43]. At f =0, the
absorption spectrum has a broad DOS of a bipartite lattice.
Increasing f leads to a narrower energy band following
Jo(f) and finally the energy band collapses at f = 2.4,
where a strong absorption peak appears at the zero
detuning. The separation between the Floquet energy bands
vy = 2Q; is large and the interaction between the states
from different bands is weak. Therefore, most of the upper
and lower Floquet bands are not visible. However, near the
band collapsing points f = 2.4, the two Floquet sidebands
become visible due to the large DOS.

The Wannier-Stark ladder appears if the force has a static
part. In Fig. 3(b), we plot the absorption spectra for n = 1.
If f =0, the force is purely static, and three peaks are
shown at A, = 0, v, which are the energies of the states
in the Wannier-Stark ladder. As f increases, we observe
energy bands following Eq. (12) with n = 1. The bands
collapse at the zero points of J;(f), f = 3.8 and 7.0. These
are consistent with the results of electrons [53-55]. The
band collapsing for some other cases is discussed in the
Supplemental Material [43].

2D and higher dimensional SL.—The 1D superradiance
chain can be extended to a 2D honeycomb lattice by

-15

FIG. 3 (color online). The absorption spectra of a 1D SL in an
oscillating force. (a) Absorption spectra as a function of detuning
A, and the amplitude-frequency ratio of the effective oscillating
force f. §; = 0, = 0. The band collapses at the Bessel function
zeros Jo(f) =0 for f = 2.4 and 5.5. (b) Absorption spectra for
01 = —0, = v,4. The band collapses at the Bessel function zeros
Ji(f)=0 for f=3.8 and 7.0. The other parameters are
Q =Q,=6y,v;, =12y, y =1, and y’ = 0.001.
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FIG. 4 (color online). (a) The honeycomb structure of the 2D
SL. Timed Dicke states with |e) and |m) correspond to the two
sublattices. The three bonds to the nearest neighbors correspond
to the three coupling fields. (b) The DOS of graphene (blue dash)
and the absorption spectrum of the 2D SL (red solid). The Rabi
frequencies of the three coupling fields are all 20y. y =1,
¥y = 0.001. Correspondingly, the nearest-neighbor hopping
coefficients are set as 20.

introducing a three-mode coupling field with wave vectors
k, = k(-1% - (V3/2)9), ko =k&, and ks =k(-1%+
(v/3/2)9), as shown in Fig. 4(a). In Fig. 4(b), we plot
the 2D SL absorption spectrum, which overlaps with the
DOS of graphene [30,31]. A striking feature is that the EIT
point in the 2D SL at A, = 0 corresponds to the Dirac point
in graphene [56]. The 2D SL provides a highly tunable
platform for the Dirac physics in graphene [30], whose
material properties are fixed. The hopping coefficients and
on-site potentials can be easily tuned by the strengths and
frequencies of the coupling fields. Interesting graphene
physics in the 2D SL, such as Berry phases, artificial gauge
field, and the Haldane model [56] will be discussed
elsewhere [57].

Similarly, a four-mode coupling field can construct
diamond-structure tight-binding models. A particularly
interesting subject to be investigated in the future is the
tight-binding SL in dimensions higher than 3 when the
number of the coupling fields is more than 4. Since real-
space tight-binding models have at most three dimensions,
a wealth of new physics such as the 4D quantum Hall effect
[58] may emerge from the extra dimensions of the SL.

Discussion.—The quantum dynamics of the 1D SL
can be detected by electromagnetically induced grating
(EIG) [59], where the nth order diffraction is emitted
by the superradiant state |ex 1., ). EIG [60,61] and bi-
chromatic EIT [62] have been experimentally observed
without being related to tight-binding lattices. Since they
only focused on the dynamics of the light, the rich physics
concerning the timed Dicke states (many of them are
subradiant and thus not detectable in the diffraction of
EIG) were ignored. Nevertheless, EIG and the related
experiments can be further used to observe the dynamic
localization via the disappearance of the EIG diffraction,
and many other condensed-matter phenomena in the
2D and higher dimensional SL.

The SL can be realized in cold atoms if the Doppler shift
due to the recoil is much smaller than the coupling field
Rabi frequency [43]. For example, we can choose the
®Rb DI line with |g) = [5%S),,,. F =2), |e) = |5*Py s,
F =2), and |m) = [52S} /5, F = 3). The decoherence rates
y = 2.9 MHz and y’ ~ 0. For the parameters in Fig. 3, the
Rabi  frequency  Q; =6y = 17.3 MHz (intensity
0.1 W/cm?) is much larger than the recoil Doppler shift
7.4 kHz. The modulation frequency v; = 12y = 34.5 MHz
and the modulation amplitude A, should be in the range
0-200 MHz. In the microkelvin regime, the thermal
motions induce frequency shifts ~kilohertz, which are
much smaller than the effective potential energy
~megahertz. One can easily trap 10° atoms in 1 mm?
and a Gaussian beam with a 3 mm diameter can be
approximated as a plane wave [62]. The band collapsing
can be directly observed through the absorption spectra.

The applications of SLs are promising. The transport of
the superradiant excitations in SLs can be used to reflect
high-frequency light (for example, x-ray or ultraviolet
light) with low-frequency light (visible light or infrared
light) [63]. The coupling strength between the lattice points
is tunable, which allows us to prepare a superposition of
two timed Dicke states that are far apart in momentum
space for Heisenberg limit metrology [64]. The effective
force in momentum space can break the time-reversal
symmetry and realize optical isolation [65].

In conclusion, we proposed the concept of superradiance
lattices based on a standing wave coupled EIT system. An
effective uniform force in momentum space can be intro-
duced by the detuning between the two components of the
standing wave. The Wannier-Stark ladder and the Bloch
band collapsing can be observed from the absorption
spectra of the probe field. The dynamic localization can
be observed from the disappearance of diffraction in an EIG
scheme. By introducing more EM modes, this lattice can be
extended to higher dimensions, where many interesting
physics can be studied.
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