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Phenomenologically important quantum dissipative processes include blackbody friction (an atom
absorbs counterpropagating blueshifted photons and spontaneously emits them in all directions, losing
kinetic energy) and noncontact van der Waals friction (in the vicinity of a dielectric surface, the mirror
charges of the constituent particles inside the surface experience drag, slowing the atom). The theoretical
predictions for these processes are modified upon a rigorous quantum electrodynamic treatment, which
shows that the one-loop “correction” yields the dominant contribution to the off-resonant, gauge-invariant,
imaginary part of the atom’s polarizability at room temperature, for typical atom-surface interactions.
The tree-level contribution to the polarizability dominates at high temperature.
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Introduction.—Can a physical object experience friction
effects, even if it is not in contact with a surface, i.e., even if
the overlap of the wave function of the atom with the
surface is negligible? This question has intrigued physicists
for the past three decades, and the precise functional form
of the noncontact friction of an atom-surface interaction
has been discussed controversially in the literature [1-9].
Intuitively, if an ion moves parallel to a surface, at a
distance a few (hundred) nanometers, then it is quite natural
to assume that the motion of the mirror charge inside the
material leads to Ohmic heating and, thus, to a commen-
surate energy loss (friction force) acting on the atom flying
by. The corresponding effect for a neutral atom is less
obvious to analyze, but one may argue that the thermal
fluctuations of the electric dipole moment of the atom may
induce corresponding fluctuations of the mirror charge(s)
of the constituent particles of the atom inside the material,
again leading to Ohmic heating. The derivation relies
heavily on the quantum statistical theory of thermal
fluctuations of the electromagnetic field near a surface
and on the fluctuation-dissipation theorem [5,10,11]. For
noncontact friction in the zero-temperature limit, even the
existence of the effect is still subject to scientific debate
[12—15]. Ultimately, noncontact friction effects limit the
extent to which friction forces [16] can be reduced in an
experiment. These limits are important for three-
dimensional atomic imaging [17], tests of gravitational
interactions at small length scales [18], and limits of
magnetic resonance force microscopy [19], and they affect
the behavior of MEMS at the nanometer scale [20].

Complementing the effect of noncontact friction, the drag
exerted by oncoming blueshifted thermal blackbody radi-
ation on a moving atom has recently been analyzed for
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nonrelativistic neutral atoms as they travel through space
[21-24]. Both the blackbody as well as the noncontact
quantum (thermal) friction require as input the imaginary
part of the atom’s polarizability, whose precise functional
form for small driving frequencies is different depending on
whether one uses (i) resonant Dirac-6 peaks [21] or the
(i1) length-gauge or (iii) velocity-gauge expressions in
the low-frequency limit (see Ref. [24] and Chap. XXI of
Ref. [25]). Any theoretical prediction crucially depends on a
resolution of the “gauge puzzle,” which is the subject of this
Letter. Quite surprisingly, a separation of the problem in
terms of a rigorous quantum electrodynamic approach to the
atom [26] leads to a natural separation of the resonant and
the nonresonant (one-loop) effects. Perhaps even more
surprisingly, the one-loop correction here dominates over
the tree-level term, for typical materials and temperatures.

Imaginary part of the polarizability.—The calculation of
the imaginary part of the polarizability relies on the
following two observations. (i) One identifies the main
contribution to the imaginary part of the polarizability with
the imaginary part of an energy shift, namely, the ac Stark
shift [27]. In second quantization, the ac Stark shift in a
laser field can be formulated in terms of the virtual
transitions of a reference state (atom in the state |¢g)
and n;, laser photons) to a virtual state with the atom in the
virtual state |¢,,) and n; + 1 laser photons. (ii) One
observes that the imaginary part is generated by an addi-
tional virtual photon loop (self-energy insertion), which is
cut in the middle of the diagram, with a virtual state that
brings the atom back to the reference state |¢g), has n; — 1
laser photons (one laser photon has been absorbed) and one

spontaneously emitted photon, with wave vector k, polari-
zation 4, and an energy w;, = .
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FIG. 1 (color online). The Feynman diagram for the ac Stark
shift involves the absorption or emission of two laser photons by
the atom (a). A tree-level imaginary part [cut of the diagram, see
(b)] is generated only if the absorbed laser photon happens to be
at resonance with regard to a transition of the atom to an excited
state [see Eq. (12)].

The Feynman diagram for the ac Stark shift is given in
Fig. 1. The reference state is |¢pg) = |¢, n,0), with the
atom in the state |¢), n; laser photons, and zero photons in
other modes. The energy eigenvalue of the unperturbed
reference state is Hy|po) = Eol¢o), with Eg=E+hn,w;,
where H, is the sum of the atomic (A) and the electro-
magnetic (EM) field Hamiltonians,

HQIHA+HEM» HA:ZEm|¢m><¢m|’ (la)

Hpy = Zha)haiah + hwpajap, (1b)
kA£L

where L denotes the laser mode, and the photon creation
and annihilation operators are a® and a, respectively
[28,29]. If the laser photon of angular frequency w; is
resonant with respect to an atomic transition, then the
absorption of a laser photon may deplete the reference state,
leading to a transition to a state |¢,) = |¢,,, ny — 1,0),
provided Aw; = E,, — E, where E is the atomic reference
state energy. However, when the absorption of a laser
photon is accompanied by the spontaneous emission of
another photon, then a transition to a final state |¢p;) =
¢,n; —1, 1Ez> becomes possible, where the laser fields
retain n; — 1 photons, while one photon is emitted into

the mode kA (the state is [1;,) in the occupation number
notation). The imaginary part of the ac Stark shift due
to the diagrams in Fig. 2 is due to the dipole interaction
H; (z-polarized laser) and the interaction Hamiltonian
H; (other field modes),

(ap +aj) = 2.Ey, (2a)

Mo (ar +at 2b
L (ag, + ), (20)

HI = —e;E (2(:)

(a) (b) (c)

FIG. 2 (color online). The radiative correction to the ac Stark
shift involves an additional virtual photon loop (green). The
imaginary part (cut of the diagram) is generated when the virtual
photon becomes real, i.e., when the laser photon has the same
energy as the spontaneously emitted photon. The different
insertions of the radiative photon in time-ordered perturbation
theory lead to the diagrams in (a)—(c).

Here, the normalization volumes are V for the quantized
field and V; for the laser field. We can write

anla)Lc d3k
I, = e =y [ £ 3
e[

for the laser field intensity /; and the matching of the sum
over available photon modes ) ; to the integral [ &k over
the continuum. Second-order perturbation theory for the
reference state |¢y) leads to [27]

I
SE®) = — (H,G'(E)H,) = —?zca(wd, (4a)

a(wy) = €ZZ<¢|ZGA(E +wp)z|p)
=S BNGAE o). (4D)

where G'(z) = [1/(H — z)]' is the reduced Green function
for atom plus field (with the reference state |¢y) excluded),
while G,(z) =[1/(Hy —z—i€)] is the atomic Green
function. The “reduction” of the Green function excludes
the combined atom plus field state |¢y) but not the atomic
reference state |¢). We assume that the atom’s reference
state is spherically symmetric. The fourth-order energy
shift leads to the diagrams shown in Fig. 2,

SEW = —(H,G'(E)H .G (E)H .G’ (Eo)H,)

— (H.G'(Eo)H,G'(Eo)H,G'(Eg)Hy)
—2(H,G'(Ey)H,G'(Eo)H,G'(Eg)HL).  (5)
The three terms in Eq. (5) correspond to the diagrams in

Figs. 2(a)-2(c), respectively. Let us consider the energy
shift due to the diagram in Fig. 2(a),
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In order to calculate the imaginary part, one isolates the
terms that correspond to the absorption from the laser
field and emission into the spontaneous mode. Using the
matching condition (3) and summing over the polarizations
of the spontaneously emitted photon, one obtains

6E~—e4/ Eh 1 hoy (5 KK
¢ (27)3 2¢pc 2 i

X (p|2GA(E — 0;,)x'GA(E + o, — 7,)
X XG4 (E — wy,)z|¢). (7)

0)z(ar +ay)
+ ag,)|o)- (6)

The imaginary part due to the transition into the state
|¢s) can be extracted from the relation 1/(x —ie) —
(P.V.)(1/x) + ind(x), where (P.V.) denotes the principal
value, i.e., by projecting

d Zé(a)h -

GA(E+H)L —CO%/{) 7

o )|p) (Pl (8)

One finally obtains

2
(¢lx' GA(E wp,)x i\¢>
)

and after summing up the diagrams in Figs. 2(a)-2(c), the
result is

I 3
m(aEa) = YL |:e_

2€0c 6reyc’ | 3

Im(SEW) =

e
R G E i
o [3 (B GA(E - )wg)

e?

FSUWGE o] (0)
so that Im(SE®) = —(I,/2¢eoc) (@} /6meoc?)[a(wy)]?.
Matching with the second-order ac Stark shift given in
Eq. (4), and adding the resonant contribution [Fig. 1(b)],
one obtains

3

ok slawl). ()

()

Im[a(w, )| = Im[ag (@, )] +

Here, Im|ag (@, )]

Il (0,)] = 23" 0ok

= Ima,(w;)] — Im[a,(—w; )]where

mw—E+ho) (12)

is the resonant contribution. (Both the resonant as well as
the nonresonant (one-loop) contributions to the atomic
polarizability are odd under a sign change of w;, and E,,, —
E is the angular frequency for the excitation to the excited
state of energy E,.) The dipole oscillator strength f,,o
reads as f,0=3¢*(E,,—E)|[(¢|x'|},)[* (see Ref. [30]).
The result (11) allows us to unify the formulas given in
Egs. (G2) and (G3) of Ref. [31], Eq. (49) of Ref. [32], and
Eq. (15.83) of Ref. [33] into a single, compact result.
Namely, the appearance of the square of the polarizability
is otherwise ascribed to a radiative reaction force [31,32]
but finds a natural interpretation within a QED formalism.
The resonant contribution is the tree-level term in QED.

In velocity gauge, one replaces for the dipole coupling
—eF-E by —ep-A/m,, where m, is the electron mass.
From the diagrams in Fig. 2, one then obtains the energy
shift given in Eq. (10), but with the replacement w; — @,
in the prefactor and x' — p’/m, in the dipole matrix
elements. The resulting expression is not identical to the
length-gauge result (11), but there are additional diagrams
to consider, given in Fig. 3, which involve the seagull
Hamiltonian, proportional to the square of the vector
potential. Using the commutator relation p’ = im,[H —
E+ wg, ri] repeatedly, one can show that the additional
terms from the diagrams in Fig. 3 restore the full gauge
invariance of the result (11).

Numerical evaluation—We are concerned with the
numerical evaluation of the blackbody friction integral
(restoring SI MKSA units)

pn’ o
s = 127[26065/)

which determines the blackbody radiation force F = —nv
and the noncontact friction integral (in ST MKSA),

e /oo
TF = 39476, 25 Jo

for interactions with a dielectric. Here, f = 1/(kgT) is the
Boltzmann factor, Z is the distance to the wall, and ¢ is the

vacuum permittivity.

H

(a) (b) (©)
FIG. 3 (color online). In velocity gauge, the seagull term leads
to additional diagrams with a two-photon vertex. As in Fig. 2, the
different insertions of the radiative photons in time-ordered
perturbation theory lead to the diagrams in (a)—(c).

doo’Im[a(w)]
sinh?( phw)

, (13)

dolm|[a(w)] {e(a}) -1

sinh?( o) |e(w) + J - (14)
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FIG. 4 (color online).

Theoretical predictions (a)—(c) for the attenuation time zpp (equal to the ratio of atomic mass to xgg) are

displayed for blackbody radiation friction. For CaF, van der Waals friction (d)—(f), the coefficient y, is defined in Eq. (17). The dashed
lines in (a)—(c) and (f) are obtained with the tree-level term given in Eq. (12).

For low temperatures (f — o), only small frequencies
contribute to the friction forces and the imaginary part of
the polarizability can be approximated as Ima(w)]~
*[a(0)]?/(6zeyc?). Here, a(0) is the static polarizability
of the atom, i.e., the low-frequency limit, where the
resonant contribution in Eq. (11) can be neglected. Thus,
the blackbody friction coefficient goes as T® for small
temperatures:

_325a(0))}  51247a(0)2,,
188 X 13507238 1350 hmSe P

(15)

The subscript of the static polarizability indicates the
system of units. In atomic units, the subscript a.u.
indicates the reduced quantity, i.e., the “numerical value”
[26,34]. The polarizability is normally given in atomic
units in the literature [35-37]. Assuming that
Im[(e(w) — 1)/(e(w) + 1)] ~ 0/ for @ — 0, where Qg
is a characteristic frequency of the material, the van der
Waals friction coefficient reads as

. ma(0)[ Arra(0)[3,
T 6032 Q 2 1505 mb Q25

NQr (16)

and thus is proportional to T* for low temperatures. (The
scope of the current paper is restricted to the evaluation of
the friction integral (14). Other sources of non-contact
atom-wall friction such as a conceivable zero-temperature

contribution [38] and [39] or the backreaction by the
induced electric field inside the material onto the atom
(see Ref. [8]) are not considered here. A more thorough
comparison of different sources of van der Waals friction
will be presented elsewhere.) For blackbody friction
[Figs. 4(a)-4(c)], numerical results are given in terms of
the temperature-dependent attenuation time g = 1, /1gp.,
where m, is the mass of the atom (hydrogen or helium).
The results for zgg are free from gauge ambiguities
(cf. Figs. 2—4 of Ref. [24]). We also consider the CaF,
van der Waals friction (for the temperature-dependent
dielectric function, see Refs. [40,41]). The numerical
results can conveniently be expressed in terms of the
damping constant y,, where

dv  ngr NQF ap\?
dv g, Mok (907
dt myu Z

- (17)

and aq is the Bohr radius. A reference value at
room temperature for metastable helium reads as

yéHe’Zzs)(298 K) = 101.6 s~!, which is exclusively due to
the one-loop contribution [second term in Eq. (11)].
The tree-level term given in Eq. (12) contributes 1.82 x
1073 s7! to y, in the mentioned example.
Conclusions.—The imaginary part of the atomic polar-
izability can be formulated as the sum of a resonant
tree-level and a nonresonant one-loop contribution, which
behaves as @> for small frequencies [see Eq. (11)]. This
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result holds for many-electron atoms; for transparency, the
dipole coupling in the derivation outlined here is formu-
lated for a single active electron. The one-loop dominance
inverts the perturbative hierarchy of quantum electrody-
namics. (The fine-structure constant, which is the pertur-
bative coupling parameter of QED, remains “hidden” in the
square of the dynamic dipole polarizability, which is itself
proportional to e?> = 4xheya.) The one-loop dominance is
tied to the regime of low driving frequencies (on the scale
of typical atomic transitions), which are commensurate
with thermal photons at typical experimental conditions.
It is surprising for a field theory with a small coupling
parameter a =~ 1/137.036 < 1.

Gauge-invariant results are calculated for the blackbody
friction, and for CaF, van der Waals friction, for ground and
selected excited states of hydrogen and helium (Fig. 4).
These may be checked against future experimental results.
The low-temperature limit of the blackbody and noncontact
van der Waals friction is evaluated analytically in Eqgs. (15)
and (16). In this limit, the coefficients are proportional to the
square of the static polarizability, and the friction coeffi-
cients are orders of magnitude larger for metastable 235,
helium than ground-state helium. Our results finally clarify
the gauge invariance of the imaginary part of the polar-
izability [25,42]. The gauge-invariant formulation using
asymptotic states confirms that the susceptibility of the
atom, for small frequencies, is consistent with the length-
gauge expression from Ref. [24] and Chap. X XTI of Ref. [25].
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