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Using a quantum circuit model we derive the maximal ability to distinguish which of several candidate
Hamiltonians describe an open quantum system. This theory, in particular, provides the maximum
information retrievable from continuous quantum measurement records, available when a quantum system
is perturbatively coupled to a broadband quantized environment.
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Two quantum states, ψ0 and ψ1, can be distinguished
unambiguously in a single experiment if they are orthogo-
nal. If nonorthogonal states ψ0, ψ1 are provided with equal
prior probabilities, the strategy distinguishing them with
the smallest error probability performs a projective meas-
urement on optimally chosen, orthogonal states ~ψ0, ~ψ1

(visualize a plane with the state vectors ψ0, ψ1 arranged
symmetrically around the 45° direction between orthogonal
vectors ~ψ0 and ~ψ1). The state vector overlap α ¼ hψ1jψ0i
specifies jhψθj ~ψθij2 ¼ 1

2
(1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj2

p
), θ ¼ 0; 1, and the

optimal guess that the prepared state was ψθ if one
measures ~ψθ has an error probability of

Pe ¼
1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jαj2

q �
: ð1Þ

Discrimination of quantum states is related to hypothesis
testing [1] and parameter estimation [2]. To determine if
the evolution of a quantum system is governed by one or
another Hamiltonian, one must perform measurements
on the system and use their outcome to infer which is
the most likely assumption. We are interested in the
situation of an open quantum system S, whose interaction
with a broadband environment E permits the Born-Markov
approximation. In other words, continuous monitoring of
the environment as depicted in Fig. 1(a) does not alter
the relaxation properties of the system (no quantum Zeno
effect). In [1] it was shown how to optimally discriminate
different hypotheses from a given measurement record
by solution of a conditional master equation, and, e.g.,
Refs. [3–10] have investigated strategies to obtain precise
estimates of physical parameters and time-dependent exci-
tation waveforms from detection signals.
Photon counting and field quadrature measurements

represent different ways to probe an optical field with
correspondingly different stochastic master equations
[11–13]. Rather than addressing particular measurement
schemes, we present a method to evaluate the optimal
discrimination allowed by any monitoring of the environ-
ment of the system (the emitted radiation) and the final state
of the system itself. Such an analysis is possible because,

under validity of the Born-Markov approximation, a
sequence of measurements on the environment may be
deferred to a final measurement of appropriate environ-
mental degrees of freedom: The temporal sequence of
detector clicks associated with counting of photons emitted
by an atom during time ½0; t� is, for example, equivalent to
the counting at time t of photons in volume elements at
corresponding distances from the atom.
The information retrieved by measurement records is

bounded by our ability to discriminate unprobed states
ψSE
0 ðtÞ and ψSE

1 ðtÞ of the system and environment which,
according to (1), is given by αSE ¼ hψSE

1 ðtÞjψSE
0 ðtÞi.

Evaluation of the joint quantum state of the system and
environment is prohibitively complicated as it requires
inclusion of a vast number of photon number states
distributed in an entangled manner over a continuum of
field modes. The state vector overlap, however, can be
obtained without recourse to calculation of the states.
The principle behind our calculation of αSE is illustrated

in Fig. 1. In part (a) of the figure we sketch the quantum
system and its environment subject to the Hamiltonian Hθ

and, possibly, to continuous probing of the radiation
emitted into the environment. In part (b) of the figure,
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FIG. 1 (color online). Panel (a) illustrates the evolution of a
quantum system S and a broadband environment E governed by a
HamiltonianHθðtÞ. In (b), the state of an ancilla qubit controls the
application of candidate Hamiltonians H0ðtÞ, H1ðtÞ. The reduced
system and ancilla density matrix ρAS follows by elimination of
the environment.
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we introduce the ancilla A and the ancilla qubit-controlled
Hamiltonian HASE¼ðj0ih0jÞA⊗H0ðtÞþðj1ih1jÞA⊗H1ðtÞ,
which represents two different candidate Hamiltonians
H0ðtÞ or H1ðtÞ. Such inclusion of ancilla qubit degrees
of freedom has been proposed for a variety of tasks,
including quantum computing on mixed state quantum
systems with one pure qubit [14], estimation of entangle-
ment [15] and thermodynamical [16] properties. Similar,
higher dimensional ancillary degrees of freedom are used in
particle filter theory with stochastic master equations [5,7].
We emphasize that the ancillary qubit is merely introduced
as a theoretical construction to represent alternative hypoth-
eses in a convenient manner.
The ancilla, system and environment are initially pre-

pared in a pure state ð1= ffiffiffi
2

p Þðj0iA þ j1iAÞ ⊗ jψSEðt ¼ 0Þi,
which evolves into

jψðtÞi ¼ 1ffiffiffi
2

p ½j0iA ⊗ jψSE
0 ðtÞi þ j1iAÞ ⊗ jψSE

1 ðtÞi�: ð2Þ

Note that the desired wave function overlap αSE ¼
hψSE

1 ðtÞjψSE
0 ðtÞi can be formally evaluated as twice the

expectation value of the raising operator, σþA ¼ ðj1ih0jÞA,
of the ancilla qubit:

hψSE
1 ðtÞjψSE

0 ðtÞi ¼ 2hσþA i: ð3Þ

At this point we use our assumption that the Born-
Markov approximation applies for the system-environment
interaction, such that the environment degrees of freedom
can be eliminated. Wewrite the density matrix of the ancilla
and the system as the following 2 × 2 matrix of matrices:

ρASðtÞ ¼ 1

2

�
ρ00ðtÞ ρ01ðtÞ
ρ10ðtÞ ρ11ðtÞ

�
; ð4Þ

where ρμν, acting on the system state space, are initially
identical, ρμνð0Þ ¼ ρSð0Þ ¼ jψSð0ÞihψSð0Þj.
The rows and columns in (4) correspond to the different

ancilla states which cause the evolution of the system
and the environment under different Hamiltonians. If the
hypotheses concern only the unitary part of the system
evolution, we apply the ancilla and system Hamiltonian,

HAS ¼
�
HS

0ðtÞ 0

0 HS
1ðtÞ

�
; ð5Þ

while, to represent different environment couplings (e.g.,
hypotheses concerning different strengths or different system
relaxation operators) the ancilla and the system are subject
to Lindblad relaxation terms, _ρAS ¼ P

mD½ĉASm �ρAS, where
D½ĉ�ρ≡ ĉ†ρĉ − 1

2
ðĉ†ĉρþ ρĉ†ĉÞ, and where ĉASm is of the

form

ĉASm ¼
�
ĉ0m 0

0 ĉ1m

�
: ð6Þ

It follows from (3) and (4) that the desired overlap is
given by the trace αSE ¼ TrSðρ01Þ. The matrix ρ01 is subject
to the combined action of the candidate Hamiltonians and
relaxation terms, and solves the equation

_ρ01 ¼
1

iℏ
ðHS

0ρ01 − ρ01HS
1Þ

þ
X
m

ĉ0mρ01ðĉ1mÞ† −
1

2
½ðĉ0mÞ†ĉ0mρ01 þ ρ01ðĉ1mÞ†ĉ1m�:

ð7Þ
This equation is structured like the Lindblad master
equation, but all operators multiplying ρ01 from the left
(right) pertain to hypothesis 0 (1). Unlike the usual master
equation which conserves the trace of the density matrix,
the left and right multiplication with different Hamiltonian
and Lindblad operators break this invariance and cause
nontrivial time evolution of αSE. An alternative derivation
of Eq. (7) using quantum measurement theory was applied
in [17–19]. The present derivation is more straightforward
and allows generalization to a wider range of problems.
For illustration, consider a two-level atom with a ground

state jgi and excited state jei driven on resonance with a
Rabi frequency Ω0 ¼ 0 or Ω1 ¼ 4κ, while the excited state
decays by fluorescence emission with a rate κ. The atom is
initialized in its ground state at t ¼ 0. It is straightforward
to solve Eq. (7) with different HS

θ ¼ ðℏΩθ=2Þðjeihgj þ
jgihejÞ and identical Lindblad damping operators ĉθ ¼ffiffiffi
κ

p jgihej, and in Fig. 2, we show with the fat solid curve
the error probability according to (1) with jαSEj2 ¼
jTrðρ01ðtÞÞj2. This curve yields the ultimate limit to our
ability to discriminate among Rabi frequencies Ω0 and Ω1.
The detection of just a single photon is incompatible with

Ω ¼ 0, while if no photon is detected our best guess among
the two choices is that Ω ¼ 0. If Ω ¼ Ω1, the probability of
detecting no photons until time t can be obtained by
propagating the so-called no-jump wave function of the
system, jψS

NJðtÞi ¼ aðtÞjgi þ bðtÞjei, according to a non-
Hermitian system Hamiltonian, HNH ¼ ðℏΩ1=2Þðjei
hgj þ jgihejÞ − ðiℏκ=2Þjeihej, and the probability of
observing no photon detection event is given by PNJ ¼
∥ψS

NJðtÞ∥2 [11,12]. The probability that Ω ¼ Ω1 is wrongly
associated with Ω ¼ 0 is thus 1

2
½jaðtÞj2 þ jbðtÞj2�, shown

as the thin solid curve in Fig. 2. From an initial value of 1
2
,

the error probability decreases, as it becomes less and
less likely that no photon has been detected from the
laser-driven atom.
Had we instead considered the case where only a

measurement on the atom is allowed at the end of the
interaction time t, such a measurement should distinguish
between the two density matrices ρ0 and ρ1 evolved by the
Lindblad master equations with the different Hamiltonians.
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The minimal probability of making an assignment error is
provided here by Helstrom [20], Pρ

e ¼ 1
2
þP

γj≤0γj, where
the sum is over the negative eigenvalues of the operator
1
2
ðρ1 − ρ0Þ. In Fig. 2, Pρ

e is shown as the dash-dotted green
curve for the case ofΩ0 ¼ 0 andΩ1 ¼ 4κ. Since the system
evolves into steady states with only partially distinguish-
able density matrices, the error probability by atomic
detection does not approach zero in the long time limit.
The quantity jaðtÞj2 derived above for the unnormalized

no-jump wave function is the probability that, despite the
nonvanishingΩ ¼ Ω1, no photon has been detected and the
atom is in its ground state at time t. Using photon counting
and detection of the final atomic excitation thus yields the
erroneous assignment (of a vanishing Rabi frequency when
Ω ¼ Ω1) with a probability jaj2=2, shown as the dashed red
curve in Fig. 2. We observe that at particular finite probing
times, we can distinguish the hypotheses with certainty.
These are the times where the no-jump wave function has
no ground-state population, and a nonvanishing Rabi
frequency results in a photonic or atomic excitation with
certainty.
The probability jaðtÞj2 for observing no photon and no

atomic excitation equals the population of the quantum
state component with no atomic or field excitations. This is
precisely the state jψSE

0 ðtÞi obtained for Ω0 ¼ 0, and hence
the overlap between the candidate system and environment
states is given by jαSEj2 ¼ jaðtÞj2. We note that although
the photon counting analysis permits calculation of the
minimal error probability (1), the optimal measurement
achieving this error is more complicated as it involves
projection on entangled superposition states fj ~ψSE

θ ig of the
atom and the quantized radiation field.

Equation (7) is readily solved for any sets of hypotheses
about Rabi frequencies, and we find that, for a vanishing
detuning, our ability to distinguish two real Rabi frequen-
cies depends only on their difference Ω1 −Ω0. This is
because addition of an extra driving Hamiltonian which
commutes with all the other Hamiltonian terms causes a
common unitary rotation and hence no change of the
overlap of the system and environment states, ψSE

θ .
Despite the striking fact that candidate values of the same
strength but opposite sign, Ω0 ¼ −2κ, Ω1 ¼ 2κ, yield
equivalent photon count signals and final atomic excited
state populations, according to Eq. (7), they are equally
well distinguished as Ω0 ¼ 0, Ω1 ¼ 4κ. Extra Rabi fre-
quency terms do not, however, commute with detuning
terms in the Hamiltonian, and we obtain different results
when the system is excited off resonance.
One may readily imagine strategies to improve experi-

ments to obtain faster or stronger discrimination. Our
theory constitutes an excellent starting point for such an
optimization effort, varying, e.g., the initial state and
available control Hamiltonians added to both H0 and H1

in (7) with the aim to minimize jTrðρ01ðtÞj2. As an example
of such optimization, we have considered the ability to vary
the Rabi frequency in experiments aiming to distinguish
whether a two-level system is driven on resonance or with a
given finite detuning δ (caused, e.g., by dispersive coupling
to an external influence). After a fast transient, the error
probability for this assignment decays exponentially with
time, and since Eq. (7) is a linear set of equations, we can
find the characteristic time scale of this decay from the
eigenvalue of the corresponding 4 × 4 matrix with the
smallest (negative) real part. Since very weak excitation
yields no fluorescence signal while very strong excitation
causes power broadening of the transition, we expect that
there exists an optimum Rabi frequency. The curves in
Fig. 3 for different detunings that we want to distinguish
from zero show the smallest negative real part of the
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FIG. 2 (color online). Time-dependent probability for errone-
ously assigning whether an atom with decay rate κ is excited
resonantly with a Rabi frequency of Ω0 ¼ 0 or Ω1 ¼ 4κ. The
error probability is shown for a purely atomic measurement
(green, dash-dotted curve), photon counting (blue, thin solid
curve), and photon counting and a measurement of the final
atomic excitation (red, dashed curve). The black, fat solid curve
shows the minimal error achievable by any measurement on the
system and the radiation field.
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FIG. 3 (color online). The numerically smallest real part of the
eigenvalues of Eq. (7) governing an exponentially converging
distinction of different discrete values of the detuning δ from zero.
The values of the convergence rate are shown as a function of the
Rabi frequency Ω for δ ¼ 0.5κ, κ, 1.5κ, 2κ, 2.5κ (from above).
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eigenvalues λ under variation of the Rabi frequency
between 0 and 1.5κ. They all vanish for Ω → 0, while
their largest value, and hence the fastest convergence of
αSE, occurs for intermediate values of Ω ∼ 0.75κ, except
for δ ¼ κ=2 which is ideally distinguished from zero by a
weaker driving field, Ω ¼ 0.62κ. Use of a time-dependent
ΩðtÞ constitutes an attractive possibility to further explore
and optimize the discrimination of different detunings.
Our theory also encompasses probe master equations [13],

describing, e.g., dispersive phase shift or polarization rota-
tion of an optical field due to its interaction with a quantum
system. In the probe master equation, normally a stochastic
backaction term appears, depending on the kind of meas-
urement performed on the probe field and its efficiency.
Our two-sided master equation omits the random backaction
terms, and Tr½ρ01ðtÞ� yields the optimum information gain
by any probe measurement. Variation of the probe field
strength, detuning and polarization corresponds to variation
of the terms ĉm and entails possibilities to optimize the
information gain.
Our use of examples with a simple two-level atom does

not restrict application of our theory to cases where a
Lindblad-like master equation, Eq. (7), can be solved for
the matrix element of ρ01. After introduction of an ancilla
to encode different hypotheses, the quantity hσþA i can be
treated as a conventional physical observable, and any
theory that permits its calculation may be applied. We can,
e.g., simulate the time evolution of (4) and determine hσþA i
by sampling with Monte Carlo wave functions [11,12],
and while these functions may correspond to a particular
(photon counting) experiment, the evaluation of the average
hσþA i yields the limit of discrimination by any detection
scheme.
While the practical availability of the information emit-

ted into the environment is compatible with Markovian
decay, non-Markovian master equations can sometimes be
derived for certain system-environment models. If, e.g., the
steps leading to a time convolutionless master equation [21]
can be carried out for the ancilla-augmented system, its
solution will provide an upper limit to the discriminating
power based on the probing of the system and environment
at a given final time. Recall, however, that the non-
Markovian dynamics may not be compatible with continu-
ous probing and measurement backaction until that time.
We are also not restricted to treatments in any definite

representation of the quantum system, and we may apply
evolution in the Heisenberg picture, input-output theory,
phase-space distribution functions, and, when applicable,
Gaussian covariance matrices [9,22,23]. While open many-
body problems may not be generally tractable, and one may
have recourse to numerical studies on finite systems,
perturbative or variational methods may apply in special
cases to evaluate expectation values with sufficient pre-
cision. Some many-body systems may thus be adequately
described by Hartree-Fock or multi-orbital mean-field

theory [24], and matrix product states [25], to mention a
few approximate treatments.
To offer an example, a large ensemble of two-level

systems, probed off resonance, can be described by
collective spin variables well approximated by canonical
conjugate variables x̂, p̂ and a Gaussian coherent initial
state [22]. Rotation of the spins due to different candidate
magnetic fields is represented by Hamiltonian terms
ℏgip̂ that cause different coherent displacements DðgitÞ.
Let k denote the strength of the probe term −k½x̂; ½x̂; ρ��
in the master equation. The two-sided interaction picture
ansatz, ρ01ðtÞ ¼ Dðg0tÞσðtÞDð−g1tÞ, yields the equation
_σ ¼ −k½ðx̂ − g0tÞ2σ þ σðx̂ − g1tÞ2 − 2ðx̂ − g0tÞσðx̂ − g1tÞ�,
and in the continuous x representation, σðx; x0; tÞ is
readily found by direct integration over time of an
ðx; x0Þ-dependent exponential factor. The final result for
Tr½ρ01ðtÞ� ¼ e−ðg0−g1Þ2t2=4e−ðg0−g1Þ2kt3=3 is interesting: The
first factor yields the overlap of the displaced coherent
states available for a final measurement whether k vanishes
or not. The second factor shows how probing for time t
entangles the spins by gradually squeezing their collective
spin variable. The overlap therefore converges faster than
the exponential dependence discussed above for a single
system, and the sensitivity increases. In [22], we indeed
found that homodyne detection allows B-field estimation
with an error scaling as 1=t3, in agreement with the scaling
of the discrimination error following from our expression
for Tr½ρ01ðtÞ�.
In conclusion, we have used a circuit model with a

qubit ancilla to address hypothesis testing. We have
identified a simple reduced system operator and an
associated effective master equation that yield the scalar
product between pure quantum states of the system and
the environment. This scalar product sets the limit to how
well the states, and hence the evolution hypotheses, may
be distinguished by any measurement scheme. Our theory
may guide efforts in the search for efficient practical
schemes, and since optimal distinguishability is achieved
by projection onto entangled states of the system and the
environment, it may be interesting to analyze adaptive
schemes that choose among measurements according to
earlier detection outcomes [9,26,27].
While we have given examples of testing between

distinctly different hypotheses, our theory also allows
estimation of the precision by which an unknown continuous
parameter can be determined. According to [2], the estima-
tion error on a continuous parameter θ scales asymptotically
according to the Cramér-Rao bound Varðθ̂Þ ≥ ð1=IðθÞÞ,
where IðθÞ is the Fisher information, IðθÞ¼
4Re½h∂θψðθÞj∂θ0ψðθ0Þi−h∂θψðθÞjψihψ j∂θ0ψðθ0Þi�θ¼θ0 . Our
theory provides the scalar products between states and—by a
finite difference approximation—the derivatives needed to
evaluate IðθÞ. An alternative, perturbative approach to obtain
the derivatives is illustrated in the Supplementary Material of
Ref. [17] and, for a different problem, in [19].
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The effective evaluation of our theory makes it a good
starting point for optimization and for studies of the role
of finite detection efficiency and unobserved dissipation
channels [6,10]. It may also provide crucial insights into
the consequence of, e.g., measurement feedback, phase
transitions and large deviation behavior [9,28–31] for
hypothesis testing and parameter estimation.

Discussions with Alexander Holm Kiilerich and support
from the Villum Foundation are gratefully acknowledged.
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