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At this time, explosive synchronization (ES) of networked oscillators is thought of as being rooted in the
setting of specific microscopic correlation features between the natural frequencies of the oscillators and
their effective coupling strengths. We show that ES is, in fact, far more general and can occur in adaptive
and multilayer networks in the absence of such correlation properties. We first report evidence of ES
for single-layer networks where a fraction f of the nodes have links adaptively controlled by a local order
parameter, and we then extend the study to a variety of two-layer networks with a fraction f of their nodes
coupled with each other by means of dependency links. In the latter case, we give evidence of ES regardless
of the differences in the frequency distribution, in the topology of connections between the layers, or both.
Finally, we provide a rigorous, analytical treatment to properly ground all of the observed scenarios and to
advance the understanding of the actual mechanisms at the basis of ES in real-world systems.
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Recently, it was pointed out that the transition of an
ensemble of networked phase oscillators from incoherence
to synchronization can be first order like, discontinuous
and irreversible, called explosive synchronization (ES).
This discovery is of huge significance, as examples of
abrupt transitions in real-world networks [1] include epi-
leptic seizures in the brain [2], the cascading failure of power
grids [3], and the jamming of the Internet [4]. Since its
discovery in 2005 [5], ES has been paid great attention
[6–14]. The accepted state of knowledge on this matter is,
hence, that ES has a basic microscopic root in the setting of
local correlation features (either imposed ad hoc [6,7] or
spontaneously emerging [8–14]) between the natural fre-
quency of a networked oscillator and its degree, or effective
coupling strength. In this Letter, we fundamentally revisit the
issue and answer the following question: Is it possible to
observe ES without the presence of any kind of correlation
features?We first consider a networkwhere a fractionf of the
nodes is adaptively controlled by a local order parameter, and
we show that ES emerges, indeed, when the value of f is over
a critical value fc. We then extend the study to multilayer
networks. Precisely, we show that ES is a generic feature
of two-layered networks, when a fraction f of their nodes
are coupled with each other by means of dependency links.
Further, we present a rigorous theoretical analysis of the
mean field, which accounts for all of the described scenarios
and allows us to we formulate a main conclusion: All
previous studies on ES can, in fact, be unified into a common
root, that of suppressing the formation of giant clusters.
We begin by considering a network of N Kuramoto-like

phase oscillators, with an explicit fraction f of the nodes
adaptively controlled by a local order parameter [15].
The evolution of each oscillator is ruled by

_θi ¼ ωi þ λαi
XN
j¼1

Aij sinðθj − θiÞ; ð1Þ

where i ¼ 1;…; N, ωi (θi) is the natural frequency (the
instantaneous phase) of the ith oscillator, λ is the overall
coupling strength, ki ¼

P
N
j¼1 Aij is the degree of node i,

and Aij are the elements of the network’s adjacency matrix
(Aij ¼ 1 when the nodes i and j are connected, and Aij ¼ 0

otherwise). As compared to previous studies, the key feature
of Eq. (1) is the presence of the parameter αi. To define αi,
we refer to the instantaneous local order parameter for the ith
oscillator, defined as riðtÞeiϕ ¼ ð1=kiÞ

Pki
j¼1 e

iθj . By defi-
nition, 0 ≤ ri ≤ 1, and ϕ denotes the phase averaged over
the ensemble of neighbors. Then, we randomly choose a
fraction f of the network’s nodes and set, for all of them,
αi ¼ ri. For the remaining fraction 1 − f of nodes, αi ¼ 1.
The degree of phase coherence in the network can be

measured by means of the global order parameter R defined
by ReiΨ ¼ ð1=NÞPN

j¼1 e
iθj, where 0 ≤ R ≤ 1 and Ψ

denote the average network’s phase. In our first numerical
simulations, we draw the set of frequencies fωig in
Eq. (1) from a random homogeneous distribution gðωÞ
in the range ½−1; 1�, and we consider an Erdős-Rónyi (ER)
network with size N ¼ 1000 and average degree
hki ¼ ð1=NÞPN

i¼1 ki ¼ 12. We increase (decrease) the
coupling strength λ adiabatically with an increment (dec-
rement) δλ ¼ 0.01 from λ ¼ 0 (λ ¼ 0.5) and compute the
stationary value of R for each λ [16] during the forward
(backward) transition from the incoherent to the phase
synchronized state. Figure 1 reports R vs λ for f ¼ 1. The
presence of an abrupt transition with an associated hys-
teretic loop in R is evident, indicating the occurrence of ES,
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as shown in Eq. (1). Denoting by d the width of such a
hysteretic loop, we calculate the value of d for different
realizations of a randomly chosen fraction f of nodes and
then obtain the ensemble average hdi. The upper inset of
Fig. 1 reports the dependence of hdi on f and shows
the existence of a critical value fc where hdi passes from
being zero (i.e., a second-order phase transition) to a finite
value. For each f > fc, there is a pair of corresponding
forward and backward transition points λF and λB, with
d ¼ λF − λB. It is mandatory here to remark that what is
reported here is based explicitly on numerical results,
which, by their intrinsic nature, are (evidently) the fruit
of a finite size investigation. Further insights on the critical
value fc will instead be reported by us elsewhere. The
lower inset of Fig. 1 reports the dependence of λF and λB
on f.
Our second step is showing the generality and scalability

of the scenario for the case of multilayer networks [17],
with different topological and frequency configurations.
For this purpose, we construct two independent networks
(I and II) with the same size N. Again, we randomly choose
a fraction f of the nodes from each of the two layers and let
them be one to one coupled with each other by forming
dependency links [18]. For convenience, we let the coupled
pairs of nodes have the same index i and we also let the
uncoupled nodes on the two layers have a one-to-one
correspondence with the same index i. The equations of
motion can be written as

_θi;1 ¼ ωi;1 þ λαi;1
Xki;1
j¼1

sinðθj;1 − θi;1Þ;

_θi;2 ¼ ωi;2 þ λαi;2
Xki;2
j¼1

sinðθj;2 − θi;2Þ; ð2Þ

where i ¼ 1;…; N and the subscripts 1,2 stand for the
layers I and II, respectively. In Eq. (2), the average degree

is hk1i¼ ð1=NÞPN
i¼1 ki;1 (hk2i¼ ð1=NÞPN

i¼1 ki;2) for
layer I (II), and the parameters αi;1 and αi;2 account for
the coupling between the two layers. Precisely, we set
αi;1 ¼ ri;2 and αi;2 ¼ ri;1 if the pair of nodes i is part
of the fraction f of coupled nodes (otherwise, we set

αi;1 ¼ αi;2 ¼ 1), where ri;1 and ri;2 are defined by ri;1eiϕ1 ¼
ð1=ki;1Þ

Pki;1
j¼1 e

iθj;1 and ri;2eiϕ2 ¼ ð1=ki;2Þ
Pki;2

j¼1 e
iθj;2 . In

other words, a group of oscillators in layer I is here
adaptively controlled by the local order parameters of
the corresponding nodes on layer II, and vice versa.
Let R1 and R2 be the global order parameters of layers I

and II, respectively, defined by R1eiΨ1 ¼ ð1=NÞPN
j¼1 e

iθj;1

and R2eiΨ2 ¼ ð1=NÞPN
j¼1 e

iθj;2 . In our simulations, layer I
is fixed as a random ER network with average degree
hk1i ¼ 12, and we draw the set frequencies fωi;1g from a
random homogeneous distribution in the range ½−1; 1�.
Instead, in the following, we will vary both the topology
and the frequency distribution gðωi;2Þ characterizing layer
II. First, we let it be an independent random ER network
with the same average degree hk2i ¼ 12, and we let its
frequencies fωi;2g be drawn from an independent random
homogeneous distribution in the range ½−1; 1�. Figure 2(a)
shows the dependence of R1 and R2 on λ for the case of
f ¼ 1. One clearly sees that ES occurs simultaneously in
both layers. To figure out the dependence of hdi on f, we
make different realizations where the coupled networks

FIG. 1 (color online). Forward (black line with squares) and
backward (red line with circles) synchronization transitions for a
single network with N ¼ 1000 and f ¼ 1. The upper and lower
insets report the dependence of the average hdi and the transition
points λF and λB, respectively, on f for ten realizations. See the
text for specifications on the network topology and on the
frequency distribution.

FIG. 2 (color online). Synchronization transitions in two-layer
networks for N ¼ 1000 and f ¼ 1. In all plots, squares and
circles (triangles and stars) are used for denoting the forward
and backward transition of R1 (R2), and the insets show the
corresponding dependence of hdi on f for ten realizations. Layer
I is fixed as a random ER network with average degree hk1i ¼ 12
and having a random homogeneous distribution of frequencies in
the range ½−1; 1�. Layer II has different specifications, as follows:
(a) it is another ER network with hk2i ¼ 12, and gðωi;2Þ is an
independent homogeneous distribution in the range ½−1; 1�; (b) it
is an ER network with hk2i ¼ 6 and gðωi;2Þ is the same as in (a);
(c) the same as in (a), but gðωi;2Þ is now a Lorentzian distribution
(see the text for a definition) with ω0 ¼ 0 and γ ¼ 0.5; (d) a BA
network with hk2i ¼ 12 and gðωi;2Þ being the same as in (a).
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are reproduced with different initial conditions, and the
fraction f at each layer is randomly chosen. Once again,
the inset of Fig. 2(a) shows the dependence of hdi on f,
which, analogously with Fig. 1, indicates the presence of a
numerically evaluated critical value fc for the setting of
the irreversible, hysteretic transition. Second, we let the
average degree hk2i of layer II change from 12 to 6, while
keeping all of the other parameters unchanged. The results
for f ¼ 1 are now shown in Fig. 2(b), with the inset again
reporting the dependence of hdi on f. Once again ES sets
in, though the associated values of d and fc are, respec-
tively, smaller and larger. As a third step, we now let the
frequency distribution gðωi;2Þ change from a homogeneous
to a Lorentzian distribution gðωÞ ¼ ð1=πÞ½ðγ=ðω − ω0Þ2 þ
γ2Þ� with central frequency ω0 ¼ 0 and γ (the half width
at half maximum [19]) equal to 0.5, while keeping all
of the other parameters the same as those of Fig. 2(a).
A significant difference between the homogeneous and
Lorentzian distributions is that the latter is heterogeneous
with an approximate power law on ω. Nonetheless,
Fig. 2(c) and its inset clearly indicate the setting of ES.
Finally, we change even the topology of layer II from an
ER network to a Barabási-Albert (BA) network [20], while
keeping all other parameters as in the case of Fig. 2(a).
Notice that, in the latter situation, the topologies of the two
layers are essentially different. Once again, the results
[reported in Fig. 2(d)] are similar to those of Figs. 2(a)–2(c)
and demonstrate the existence of both a hysteretic loop
and a critical fc associated with the transition to
synchronization.
The Supplemental Material [21] reports full evidence

that the scenarios observed in both Fig. 1 and Fig. 2 occur
in the absence of correlation features between the frequen-
cies of the oscillators and their degrees, or the coupling
strength.
With the exception of the dependency of fc on the

parameter λ, it is also interesting to study how fc numeri-
cally depends on the system parameter hki. We find that, in
the case of a single network, fc decreases monotonically
with the increase of hki. As in the case of the duplex with
the two layers having an equal size N, we consistently
observe a similar decreasing phenomenon, giving a hint
that denser connections actually make ES occur easily.
Figure 2 in our Supplemental Material [21] actually
accounts for the overall, relative scenario.
We now stop for a moment and try to recall (at this stage)

the remarkable conclusions that can be drawn from what
we have reported so far. ES is a generic property of adaptive
networks, as well as multilayer networks, as far as the
coupling form used in Eqs. (1) and (2) is taken into account.
This has two main implications: (i) it sharply contrasts with
previous conclusions that a positive correlation between the
natural frequencies of oscillators and their effective cou-
plings is the essential root for ES; and (ii) the passage from
a first- to a second-order transition is actually controlled

here by the coupled fraction f of nodes for which
adaptation is effective.
The next step of our study, then, is moving to some

theoretical analysis, in order to grasp the essential ingre-
dients at the origin of the observed scenarios. To that
purpose, we consider the case of Fig. 1, with f ¼ 1 as an
example. One has

_θi ¼ ωi þ λr2i ki sinðΨ − θiÞ; ð3Þ

where _Ψ ¼ Ω is the group angular velocity. In the mean-
field framework, ri ¼ R. Letting Δθi ¼ θi −Ψ, Eq. (3)
becomes Δ_θi ¼ ωi −Ω − λR2ki sinðΔθiÞ.
If jωi − Ωj < λR2ki, then Δ_θi reaches a fixed point

defined by sinðΔθiÞ ¼ ðωi −ΩÞ=λR2ki, indicating that
the oscillator i becomes phase locked to the mean field.
Otherwise, Δ_θi never reaches a fixed point, indicating that
oscillator i drifts at all times. Considering that the natural
frequency distribution gðωiÞ is symmetric here, we have the
average frequency Ω vanishing. Thus, for the phase-locked
oscillators, one has

Δθi ¼ arcsin

�
ωi

λR2ki

�
; jωij ≤ λR2ki: ð4Þ

Based on Eq. (4), one can calculate the order parameterR.
Noticing thatR can be redefined asR ¼ P

N
j¼1 kjrj=

P
N
j¼1 kj

[22,23], which givesReiΨ ¼ ð1=NhkiÞPN
j¼1 kje

iθj , and that
the drifting oscillators do not contribute to R [8,24], one has

R ¼ 1

Nhki
X

jωjj≤λR2kj

kj cosðΔθjÞ: ð5Þ

Substituting Eq. (4) into Eq. (5) one eventually obtains

R ¼ ð1=NhkiÞPjωjj≤λR2kjkj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðωj=λR2kjÞ2

q
. Replacing

the summation by an integration, the contribution of the
locked oscillators to the order parameter is therefore

R ¼ 1

hki
Z
jωj≤λR2k

hðk;ωÞk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ω

λR2k

�
2

s
dωdk; ð6Þ

where hðk;ωÞ is the joint distribution and can be written
as hðk;ωÞ ¼ PðkÞgðωÞ, with PðkÞ being the degree distri-
bution of the network.
If repeated for the case of Eq. (2), the same treatment

yields

R1 ¼
1

hk1i
Z
C1

hðk1;ω1Þk1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
ω1

λR1R2k1

�
2

s
dω1dk1;

R2¼
1

hk2i
Z
C2

hðk2;ω2Þk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
ω2

λR1R2k2

�
2

s
dω2dk2; ð7Þ
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where C1;2≡jω1;2j≤λR1R2k1;2 are the integration domains,
hðk1;ω1Þ ¼ Pðk1Þgðω1Þ, and hðk2;ω2Þ ¼ Pðk2Þgðω2Þ,
with Pðk1Þ and Pðk2Þ being the degree distributions of
layers I and II, respectively.
Figure 3 in our Supplemental Material [21] reports the

solutions of Eqs. (6) and (7). In both cases [illustrated
by Figs. 3(a) and 3(b)], it is easy to notice the presence
of an unstable middle branch, which is responsible for
the hysteretic loop associated to ES and is observed in
Figs. 1 and 2.
Our analytic results allow, actually, for a better and

deeper understanding of the intimate causes of ES, and in
particular of the microscopic mechanisms that are at the
basis of the arousal of explosiveness in the transition.
Indeed, if one considers the usual Kuramoto model _θi ¼
ωi þ λ

P
N
j¼1 Aij sinðθj − θiÞ for the common second-order

phase transition and develops the same mean-field treat-
ment, one obtains that the formula for the order parameter is

R ¼ 1

hki
Z
jωj≤λRk

hðk;ωÞk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ω

λRk

�
2

s
dωdk: ð8Þ

Now, a distinctive difference between Eq. (8) and Eq. (6) is
that the integration range jωj ≤ λRk in Eq. (8) is replaced
by jωj ≤ λR2k in Eq. (6), which results in the following,
remarkable consequence. For the backward curves in
Figs. 1 and 2, one has R ≈ R2 ≈ 1, and thus the difference
between R and R2 is not that large. Instead, for the forward
curves of the transition, one has R ≈ 0, and thus the
difference between R and R2 is significant there; i.e., R2

will be much smaller than R. Notice, further, that the
integration domains in Eqs. (8) and (6) actually determine
the fraction of oscillators belonging to the main synchro-
nization cluster. In other words, larger synchronized clus-
ters are forbidden to be formed in Eq. (6), analogous with
the suppressive rule discussed in Ref. [13]. In detail, in the
usual case of a second-order transition, the oscillators with
closer natural frequencies will first form small synchron-
ized clusters and then these clusters will gradually grow up
and merge with the increase of the coupling strength, until
eventually forming a giant cluster. On the contrary, in the
present case, the factor R2 in the integration domain has
the effect of actually suppressing the merging of small
synchronized clusters. Thus, with the increase of λ, more
and more free oscillators will be attracted to each of the
distinct clusters, but these clusters are prevented from
merging with each other. Eventually, when no more free
oscillators are left, a discontinuous and abrupt behavior of
R will show up as a consequence of the sudden collapse of
all clusters.
Note that the above discussion holds for the case f ¼ 1.

When f < 1, the oscillators can actually be divided into
two groups, the controlled fraction f and the free fraction
1 − f. The oscillators in the controlled fraction have a

behavior similar to that of the case f ¼ 1, while those in
the fraction 1 − f will behave similarly to Eq. (8). The
controlled group f and the free group 1 − f are in fact
interconnected, and the behavior of the free part 1 − f will
be influenced by the controlled part f, thus implying that
the merging of small clusters in the free part 1 − f will
again be suppressed. The thermodynamic limit of this
interplay will soon be reported elsewhere. For the time
being, we emphasize that the idea of coupling on a fraction
of elements can be also used in different contexts, such
as achieving generalized synchronization in autonomous
dynamical systems [25], and for the occurrence of complete
or generalized chaos synchronization [26].
The most remarkable conclusion of our study is therefore

that ES has, indeed, a microscopic root, but this root is
essentially to be found in no matter whatmechanism is able
to suppress the formation of a giant synchronization cluster.
While a positive correlation between the oscillators’ natural
frequencies and their degrees [6,7] or coupling strength
[9–11] has the effect of suppressing the formation of
any synchronization cluster, in the present case (i.e., in
the absence of any specific correlation features), the net-
work nodes are initially able to form small independent
synchronized clusters, each one of them being able to
further grow with the increase of the coupling strength, and
the suppression mechanism acts instead by impeding the
merging process of the clusters. We cannot, therefore,
exclude the possibility that even other forms of implement-
ing such a basic suppressive rule, originating possibly from
still unrevealed microscopic sources, would equally deter-
mine the arousal of ES in networked systems.
In conclusion, we reported on the setting of abrupt

and explosive synchronization in adaptive and multilayer
networks, where it is observable even without the require-
ment of correlations between natural frequencies and
effective couplings of the networks’ nodes. Our results
are fully robust against large variations in the network
topologies and frequency distributions. Based on these
findings and in contrast with the accepted state of knowl-
edge on the subject, we can safely conclude that the
necessary condition for ES is the existence of a microscopic
suppressive rule able to prevent (in one way or another)
the formation of a giant synchronization cluster.
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