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High-precision dc magnetization measurements have been made on CuðC4H4N2ÞðNO3Þ2 in magnetic
fields up to 14.7 T, slightly above the saturation field Hs ¼ 13.97 T, in the temperature range from 0.08 to
15 K. The magnetization curve and differential susceptibility at the lowest temperature show excellent
agreement with exact theoretical results for the spin-1=2 Heisenberg antiferromagnet in one dimension.
A broad peak is observed in magnetization measured as a function of temperature, signaling a crossover to
a low-temperature Tomonaga-Luttinger-liquid regime. With an increasing field, the peak moves gradually
to lower temperatures, compressing the regime, and, atHs, the magnetization exhibits a strong upturn. This
quantum critical behavior of the magnetization and that of the specific heat withstand quantitative tests
against theory, demonstrating that the material is a practically perfect one-dimensional spin-1=2
Heisenberg antiferromagnet.
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Quantum spin systems in one dimension have been the
subject of intensive experimental and theoretical studies
because of their intriguing properties arising from strong
quantum fluctuations [1]. Among them, one of the simplest
is the spin-1=2 one-dimensional (1D) Heisenberg antifer-
romagnet (HAF), whose ground state is a quantum critical
state called a Tomonaga-Luttinger liquid (TLL) [2]. Two
hallmarks of this unique state are gapless elementary
excitations, which are interacting spin-1=2 quasiparticles
known as spinons, and power-law decays of correlation
functions indicating a quasi-long-range order [1]. The basic
character of the TLL in this system has been well
established theoretically, yet quantitative comparisons with
experiment are still incomplete, particularly near the
saturation magnetic field.
In a magnetic field H, the Hamiltonian of the spin-1=2

1D HAF is

H ¼ J
X

i

Si · Siþ1 − gμBH
X

i

Siz; ð1Þ

where J is the intrachain coupling constant, and g and μB
are the g factor and the Bohr magneton, respectively. The
TLL survives up to the saturation fieldHs ¼ 2J=gμB [1–3],
the quantum critical point (QCP)—in fact, the end point of
a line of quantum critical points—at which it gives way to a
gapped, field-induced ferromagnetic state.
In 1D spin systems that are gapped at zero field, such as

spin-1 Haldane chains and spin-1=2 two-leg ladders, an
additional QCP exists—the lower critical fieldHc, at which
a quantum phase transition takes place from a gapped,

disordered state to a TLL. Near Hs and Hc, an effective
description of the TLL is given in terms of interacting
magnons—quasiparticles carrying spin 1 [4,5]; the ground
states in the regionsH ≥ Hs andH ≤ Hc can be considered
vacuums, in which excitations are, respectively, Sz ¼ −1
and Sz ¼ 1 magnons [6].
In the dilute limit, these 1D magnons can be exactly

mapped onto free fermions [7,8]. As a result, the number of
magnons, Nm, near the QCPs is given by

Nm

L
¼

Z
∞

0

dϵDðϵÞfðϵ − μÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
πℏ

Z
∞

0

dx

ex
2−μ=kBT þ 1

; ð2Þ

where L is the number of spins, fðϵ − μÞ the Fermi
distribution function, and DðϵÞ the density of states of
the free fermions, whose dispersion at the band edge is
quadratic, ϵ ¼ ℏ2k2=2m. Here, m is the effective mass, and
the chemical potential μ is gμBðHs −HÞ or gμBðH −HcÞ
[6,9]. Magnetization per spin, M=L, is ðMs − NmÞ=L and
Nm=L near Hs and Hc, respectively, where Ms is the
saturation magnetization.
According to Eq. (2), the magnetization at a given μ has

an extremum at [6]

kBTex ¼ 0.76238μ; ð3Þ

where Nm becomes minimum. This universal relation,
confirmed in the spin-ladder system ðCu7H10NÞ2CuBr2
(DIMPY) near Hc ¼ 3 T [10], marks the boundary at
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which the quadratic dispersion becomes a poor approxi-
mation because of the linear dispersion of spinons near
ε ¼ 0—a crossover from a quantum-critical region to a
TLL region [6,9,11]. The magnetization extremum persists
even at fields far away from the QCPs, as has been shown
by numerical calculations for spin-1 Haldane chains [6]
and spin-1=2 two-leg spin ladders [12,13], and as has
been observed in DIMPY [10], NiðC5H14N2Þ2N3ðPF6Þ
(NDMAP) [14], and ðCu5H12NÞ2CuBr4 (BPCB) [15].
This easily identifiable anomaly in magnetization, hence,
serves as a convenient marker of the crossover to the low-
temperature, TLL region at all fields [15]. However, in
spin-1=2 1D HAFs, no experimental work has been done to
our knowledge to investigate a temperature dependence
of magnetization in detail at fields near Hs, the QCP,
because many spin-1=2 1D HAFs, including Sr2CuO3

(J ¼ 2200 K) [16] and KCuF3 (J ¼ 380 K) [17], need
very strong magnetic fields, in excess of hundreds of teslas,
to reach Hs.
In this Letter, we investigate quantum critical behavior of

the magnetization of a spin-1=2 1D HAF near this QCP in
detail. For this purpose, we have performed high-precision
dc magnetization measurements, supplemented by some
specific-heat measurements, on CuðC4H4N2ÞðNO3Þ2, or
CuPzN for short—a prototypical spin-1=2 1D HAF com-
pound with a relatively small intrachain coupling of J ¼
10.3 K [18] and a corresponding Hs of about 14 T.
Comparison of the magnetization data, taken at 0.08 K
which is less than 0.01J, with a Bethe-ansatz prediction and
our exact calculation employing the quantum transfer-
matrix (QTM) method [19,20] demonstrates that CuPzN
is a practically perfect spin-1=2 1D HAF. We observe
quantum critical behavior near the QCP in excellent
agreement with Eqs. (2) and (3) and with QTM results.
Preliminary results have been reported in Ref. [21].
In CuPzN, chains of S ¼ 1=2 Cu2þ run along the

crystallographic a axis [18,22]. A zero-field muon-spin-
relaxation experiment has detected three-dimensional (3D)
magnetic ordering at TN ¼ 0.107 K [23]. From this, the
interchain coupling constant J0 has been estimated to be
0.046 K. Consistent with such a small J0 relative to J, no
anomaly indicative of the ordering has been found in
specific heat and magnetization down to 0.05 K, well
below TN [24].
Our dc magnetization measurements were performed on

a 3.59 mg sample of CuPzN, using a force magnetometer
[25]. A 3He-4He dilution refrigerator and a sorption-type
3He refrigerator were used in the temperature ranges
0.08 K ≤ T ≤ 2 K and 0.3 K ≤ T ≤ 15 K, respectively.
Static magnetic fields up to 14.7 T were applied along
the b axis, perpendicular to the spin-chain direction. Precise
calibration of the magnetization was made by comparing
the MðHÞ data at 4.2 K with those obtained by a super-
conducting-quantum-interference-device magnetometer. In
addition, specific-heat measurements were performed on a

1.10 mg sample at 14 T with a relaxation technique. The
samples for both measurements were single crystals grown
by slow evaporation of a mixture of deuterated pyrazine
with a heavy-water solution of copper nitrate [22].
Figure 1(a) shows the magnetizationM and the magnetic

susceptibility dM=dH of CuPzN at 0.08 K as a function of
the magnetic field up to 14.7 T. Figure 1(b) is an enlarged
view of Fig. 1(a) near the saturation fieldHs, along with the
well-known exact Bethe-ansatz curve at T ¼ 0 [26] recom-
puted for the present purpose. The best fit of the curve to
the data gives J ¼ 10.8ð1Þ K and g ¼ 2.30ð1Þ, which agree
well with previously reported values [18,27], and Hs is
found to be 13.97(6) T. The fit is excellent up to 13.9 T, but
the data very near Hs do not exhibit a square-root
singularity, Ms −M ∝ ðHs −HÞ1=2, predicted by theory
[28,29]. Accordingly, dM=dH has a prominent peak at
13.95 T but does not diverge. However, fitting the expres-
sion 1 −M=Ms ¼ Dð1 −H=HsÞ1=δ to the data between
13.6 T and 13.9 T yields D ¼ 1.24ð8Þ, Hs ¼ 13.98ð1Þ T,
and δ ¼ 1.98ð8Þ, with D and δ agreeing with the predicted
values 4=π ≈ 1.273 [29] and 2, respectively. Moreover, our
exact curve for T ¼ 0.08 K, calculated by the QTM
method and shown in Figs. 1(a) and 1(b), is in close
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FIG. 1 (color online). (a) Field dependence of the magnetiza-
tion M (solid circles) and the differential susceptibility dM=dH
(solid squares) at 0.08 K, along with the result of exact QTM
calculations for the 1D spin-1=2 HAF at 0.08 K (open symbols).
(b) Enlarged plot near Hs ¼ 13.97 T. The dashed line is a Bethe-
anzatz result for T ¼ 0. In both panels, thin solid lines are guides
to the eye.
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agreement with the data even near Hs. These observations
strongly suggest that the rounding of M and the corre-
sponding nondivergence of dM=dH at Hs are not caused
by the interchain coupling J0, but by thermal fluctuations in
the vicinity of the QCP [30].
The temperature at which the MðHÞ curve was mea-

sured, 0.08 K, is definitely below the zero-field TN of
0.107 K. Therefore, the boundary of the 3D ordered phase
will cross this temperature at some field below Hs.
Nonetheless, the MðHÞ curve exhibits no anomaly that
indicates such a transition, in accordance with the previous
experiment on a powder sample [24]. Taken together, these
results suggest that the 3D ordering has a negligible effect
on the thermodynamic properties of CuPzN.
The temperature dependence of the magnetization is

shown in Fig. 2 for several magnetic fields. The magneti-
zation has been divided by the field to compare data taken
at different fields. In the limit of H → 0, M=H is expected
to reach a maximum at Tp ∼ 0.641J [29,31]. This relation,
combined with the experimental value of Tp ¼ 6.89 K at
1 T, yields J ¼ 10.8 K, in perfect agreement with the value
determined from the MðHÞ data. With the increasing field,
Tp gradually decreases, and, at 13.9 T, the magnetization
peak eventually vanishes into a temperature region well
below 0.08 K [see Fig. 2(b)]. At 14 T, the data show a
strong upturn as T → 0, indicative of quantum criticality.
At fields above Hs, where the ground state is a gapped,
field-induced ferromagnetic state, the magnetization levels
off at low temperatures as seen in the 14.5 T data. These
features have been expected by numerical calculations for
spin-1=2 1D HAFs [34].
Figure 3(a) shows the variation of ðMs −MÞ=H with

temperatures for several fields very near Hs in a log-log

plot. At 14 T, a field that is indistinguishable from Hs
within experimental uncertainty, ðMs −MÞ=H is approx-
imately proportional to

ffiffiffiffi
T

p
down to the lowest temperature

investigated; the best fit of the expression ðMs −MÞ=H ∝
Tβ to the data below 1 K yields β ¼ 0.48ð1Þ ≈ 1=2. This
power-law behavior can be explained by Eq. (2), in which
the integral becomes a constant at H ¼ Hs, where μ ¼ 0,
yielding

Ms −M ¼ 0.241 32gμB
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=J

p
ð4Þ

per Cu2þ, because m ¼ ℏ2=J. As shown in Fig. 3(b), the
equation Ms −M ¼ B

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=J

p
can be fitted very well to

the 14 T data over the entire temperature range of the
measurements, up to 15 K, by choosing Ms and B as
separate fitting parameters, while J is set at 10.8 K obtained
from the MðHÞ data. The fit gives Ms ¼ 1.14μB per Cu2þ,
in excellent agreement with 1.15 μB obtained from the
MðHÞ data (see Fig. 1), and B ¼ 0.230ð1Þ gμB in good
agreement with the exact prefactor in Eq. (4). Moreover, as
is also shown in the figure, the data are in nearly perfect
agreement with our QTM calculation at Hs using the J and
g obtained from the MðHÞ data.
At this field, specific heat divided by temperature, shown

in the inset to Fig. 3(b), also exhibits characteristic power-
law behavior. The best fit of the relation C=T ∝ T−α to the
data below 2 K yields α ¼ 0.49ð1Þ ≈ 1=2. This power-law
dependence arises directly from the density of states in one
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FIG. 3 (color online). (a) Log-log plot of ðMs −MÞ=H near Hs
as a function of temperature below 2 K. The saturation mag-
netization Ms ¼ 1.15μB has been taken from the magnetization
curve at 0.08 K (see Fig. 3). The best fit of a power law,
ðMs −MÞ=H ∝ Tβ, to the 14 T data yields β ¼ 0.48ð1Þ (solid
line). (b) Comparison of M at 14 T with the result of a QTM
calculation for a 1D spin-1=2 HAF at Hs (crosses). The solid line
is the best fit with β ¼ 1=2 described in the text. Inset: C=T as a
function of temperature at 14 T (open circles). Nuclear and
phonon contributions have been subtracted. Crosses are QTM
results. The best fit of the power lawC=T ∝ T−α below 2 K yields
α ¼ 0.49ð1Þ (dotted line).
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dimension, DðϵÞ ∝ 1=
ffiffiffi
ϵ

p
: since C=T is approximately

proportional to DðkBTÞ when μ ¼ 0, it follows that it is
proportional to 1=

ffiffiffiffi
T

p
[34]. To be precise,

C=T ¼ 0.22894k3=2B =
ffiffiffiffiffiffi
JT

p
ð5Þ

per Cu2þ. Fitting the expression C=T ¼A=
ffiffiffiffiffiffi
JT

p
to the data

below 2 K—where A is the only fitting parameter, with J
the one obtained from the MðHÞ data—yields A ¼
0.215ð1Þk3=2B in good agreement with the exact prefactor
in Eq. (5). As is also shown in the figure, the data are in
excellent agreement with our QTM calculation using the J
obtained from the MðHÞ data.
At fields slightly away from Hs, the ðMs −MÞ=H vs T

plots in Fig. 3(a) deviate from the
ffiffiffiffi
T

p
behavior at low

temperatures but retain it above 1 K. This trend can also be
explained by Eq. (2). SinceH and T appear in the integrand
of Eq. (2) only as the combination μ=kBT, Eq. (4) holds for
kBT ≫ gμBðHs −HÞ as long as the dispersion is quadratic.
It should be emphasized, however, that the

ffiffiffiffi
T

p
behavior

persists down to T ¼ 0 only at Hs.
A brief remark on the power-law exponents is in order.

Obviously, the combination αþ βð1þ δÞ ¼ 1.92ð4Þ of the
exponents α ¼ 0.49ð1Þ, β ¼ 0.48ð1Þ, and δ ¼ 1.98ð8Þ
from our experiment is very close to the universal scaling
value 2. In fact, α ¼ 1=2 can be obtained simply from the
scaling relation α ¼ 2 − ðdþ zÞ=z, where the dynamical
exponent z is 2 for free fermions and the spatial dimension
d is 1. Similarly, β ¼ 1=2 and δ ¼ 2 can be derived by
employing a scaling argument [9].
Finally, the magnetic phase diagram of CuPzN is

presented in Fig. 4 on the basis of dðM=HÞ=dT, with
Tp from Fig. 2 superposed to indicate the crossover to the
TLL phase. Note that Eq. (3) gives a parameter-free
expression for Tp,

Tp ¼ 0.762 38
gμB
kB

ðHs −HÞ: ð6Þ

This universal relation, shown as a dotted line with the g
and Hs obtained from the MðHÞ data, with no fitting
parameter, agrees excellently with the data near Hs. The
linear dependence, distinct from the power-law dependence
for a Bose-Einstein condensation (BEC) of magnons [35],
indicates that the 3D magnetic ordering of CuPzN due to J0
is irrelevant in the temperature range of the present work, at
least nearHs. This is further supported by the 1D exponents
for the specific heat and magnetization, α ¼ 0.49ð1Þ ≈ 1=2
and β ¼ 0.48ð1Þ ≈ 1=2, which are in marked contrast to
α ¼ −1=2 and β ¼ 3=2 found in the magnon BEC in
NiCl2-4SCðNH2Þ2 [36]. As the magnetic field further
decreases, Tp deviates downward from the straight line,
owing to repulsion between magnons [6].
In summary, we have examined in detail a crossover of

CuPzN from a thermally disordered high-temperature phase
to the Tomonaga-Luttinger-liquid phase, and the critical
behavior of the magnetization and specific heat near the
saturation field Hs. The crossover temperature Tp—the
temperature of the broad magnetization peak—starts off at
a low fieldwith the theoretical value that has beenwell known
for 50 years [29] for the one-dimensional spin-1=2
Heisenberg model, decreases with increasing field, and
smoothly connects near Hs to the universal, linear line for
free fermions. AtHs, the magnetization and specific heat are
in excellent agreement with universal power laws for free
fermions and with exact results calculated with the QTM
method. The magnetization curve at 0.08 K is also in
excellent quantitative agreement with an exact Bethe-ansatz
result up to 99% of Hs. The deviation very near Hs is fully
accounted for byQTMcalculations at this temperature.These
findings demonstrate that CuPzN is a practically perfect
one-dimensional spin-1=2 Heisenberg antiferromagnet.
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