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We consider a Josephson junction formed by a quantum dot connected to two bulk superconductors in
the presence of Coulomb interaction and coupling to both an electromagnetic environment and a finite
density of electronic quasiparticles. In the limit of a large superconducting gap we obtain a Born-Markov
description of the relevant Andreev bound-states dynamics. We calculate the current-phase relation and
we find that the experimentally unavoidable presence of quasiparticles can dramatically modify the 0-π
standard transition picture. We show that photon-assisted quasiparticle absorption allows the dynamic
switching from the 0 to the π state and vice versa, washing out the 0-π transition predicted by purely
thermodynamic arguments. Spectroscopic signatures of Andreev bound-states broadening are investigated
by considering microwave irradiation.
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Introduction.—The Josephson junction is a fundamental
element of superconducting quantum nanoelectronics, with
a wide spectrum of applications ranging from quantum
information to medical imagery. Such a junction can be
formed by contacting two superconductors by a large
variety of nanostructures [1–7]. A fruitful way to describe
transport through the device is to consider the formation of
electronic bound states at the junction known as Andreev
bound states. In thermodynamic equilibrium, at low tem-
peratures, and for junctions shorter than the superconduct-
ing correlation length ξ, the current-phase relation is
determined mainly by the phase dependence of the lowest
energy Andreev bound state. A wealth of experimental
and theoretical work has been devoted to investigate the
current-phase dependence in Josephson junctions and
leads, for instance, to the prediction [8–11] and the
observation [4,12–16] of a change of sign of the current-
phase relation, the so called 0-π transition. This can be
induced by the presence of magnetic moments (magnetic
impurities or a ferromagnetic layer) or in a nonmagnetic
material by the repulsive Coulomb interaction at the
quantum dot forming the junction, as is observed in carbon
nanotubes [15,17–19] or semiconducting nanowire [4]
Josephson junctions. At the basis of this transition is the
change of the parity of the junction. In superconductors
electrons are paired, but if in the quantum dot forming the
Josephson junction Coulomb repulsion is sufficiently large,
the ground state will accommodate only one electron. At
lowest order in the tunneling, the Josephson current is
suppressed, and at the next (fourth) order it changes sign
[9], since Cooper pairs are recomposed by tunneling with
reversed spins.
Only recently a direct detection of the excited Andreev

bound states has been possible with a series of experiments

that probed the Josephson junction by resonating micro-
wave irradiation [20,21]. These experiments pointed out the
importance of the coupling to the electromagnetic (EM)
environment and in particular to the quasiparticles present
in the superconducting leads. It is an established exper-
imental fact that the density of quasiparticles does not
vanish exponentially with the temperature as predicted
by the BCS theory, but remains finite, even at the lowest
temperatures [22,23]. Environment-assisted absorption
of quasiparticles can modify the junction parity, since an
unpaired electron can fall in the quantum dot. This process
has been considered very recently for junctions where
Coulomb interaction is negligible [23].
In this Letter, we investigate the effect of parity tran-

sitions induced by the quasiparticle absorption and emis-
sion in the presence of Coulomb interaction. We consider
the limit for which the superconducting gap is the largest
energy scale, also known as the atomic limit. We obtain an
exact Born-Markov description of the system coupled to
the EM environment. In this approximation, the π phase is
indicated by the occupation of an odd-parity state with a
vanishing of the supercurrent. This allows us to describe in
a consistent way the 0-π transition by taking into account
the relaxation processes that induce parity changes. We find
that the presence of quasiparticles can completely wash out
the 0-π transition, and invalidate the usual arguments based
on the parity of the lowest energy state. The quasiparticles
are necessary to let the system relax to the lowest energy
ground state, but at the same time, they allow dynamic
transitions between states, smoothing the transition. We
also present predictions for the microwave spectroscopy of
the Andreev bound states.
Model.—Let us consider a quantum dot with a single

electronic level forming a Josephson junction between two
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superconducting leads [see Fig. 1(a)]. We assume that the
junction is phase biased, that a time-dependent gate voltage
can be applied, and that the source-drain circuit is shunted
on an external impedance ZðωÞ. This system can be
modeled by the (time-dependent) Hamiltonian

H ¼ HdotðtÞ þHL þHR þHT þHB þHc: ð1Þ

The first term of Eq. (1) reads HdotðtÞ ¼ ϵdðtÞðn↑ þ n↓Þ þ
Un↑n↓ and it describes the single-electronic level of
time-dependent energy ϵdðtÞ ¼ ϵ0 þ ϵ1 cosðωtÞ and
Coulomb repulsion U. Here nσ ¼ d†σdσ, dσ is the electronic
destruction operator on the dot of spin projection σ,
and ω is the frequency of the microwave driving.
The second and third terms HX ¼ P

kσξXkc
†
XkσcXkσ þP

k½ΔXeiϕXc†Xk↑c
†
X−k↓ þ H:c:� describe the left and right

leads (X ¼ L; R) as BCS superconductors of order param-
eter ΔXeiϕX and electronic spectrum ξXk, with cXkσ the
related destruction operator for momentum k. The dot
and the leads are coupled by the tunneling term
HT ¼ P

XkσtXkc
†
Xkσdσ þ H:c. that gives rise to a rate

ΓX ¼ πρXjtXj2=ℏ, where ρX is the density of states at the
Fermi level of the superconductor X and ℏ is the reduced
Planck constant. The EM modes described by ZðωÞ induce
fluctuations of the superconducting phase difference at the
ends of the junction [24,25]. For simplicity we assume that
the gate capacitance is much smaller than the symmetric
left and right capacitances. Within these assumptions and
for ReðZÞ ≪ RQ ¼ πℏ=2e2, the quantum of resistance (e is
the electron’s charge), we can expand the dependence
of the Hamiltonian on the phase difference fluctuations ~ϕ,
obtaining the linearized coupling term Hc ¼ ðℏ=eÞI ~ϕ,
where I ¼ ðIL − IRÞ=2 is the total physical current

(including the displacement current). It is expressed in
terms of the left and right particle current operators IX ¼
ðe=iℏÞPkσtXkc

†
Xkσdσ þ H:c. The term HB describes the

EM modes and following Ref. [25] one obtains
h ~ϕðtÞ ~ϕð0Þi≡CϕðtÞ¼2

R∞
0 dωRe½ZðωÞ�½cothðℏω=2kBTEMÞ×

cosωt−isinωt�=ðωRQÞ, with TEM the temperature of the
EM environment and kB the Boltzmann constant. In
the following we will consider the symmetric case,
for which ΓX ¼ Γ=2, and ΔX ¼ Δ for X ¼ L and R.
Moreover, since the final results depend only on the
phase difference ϕL − ϕR we set from the outset
ϕL ¼ −ϕR ¼ ϕ=2.
When the driving and the coupling to the environment is

neglected this Hamiltonian has been widely studied in the
literature [26–31] and it is known to show a rich phase
diagram with a 0-π transition controlled by Kondo corre-
lations. The problem can be treated analytically only in a
few regimes, and only for the equilibrium case is an exact
solution available based on the numerical renormalization
group [32,33] or Monte Carlo simulations [34]. The
objective of this work is to explore the fate of the 0-π
transition in the presence of the quasiparticles and EM
environment. The system being out of equilibrium, we
choose to investigate the case Δ ≫ jϵdj; U;ℏΓ;ℏω, for
which a systematic controlled approximation is possible. In
this limit the four states of the isolated dot j0i, j↑i ¼ d†↑j0i,
j↓i ¼ d†↓j0i, and j2i ¼ d†↑d

†
↓j0i are only weakly coupled

to the leads, and their (unperturbed) energy levels
f0; ϵ0; ϵ0; 2ϵ0 þUg are well separated from the quasipar-
ticle continuum. Following a standard procedure of atomic
physics [35,36] the effect of HT can then be taken into
account systematically by performing a unitary transfor-
mation that generates an effective Hamiltonian Heff

d in the
four-dimensional space of the quantum dot. At lowest
order in ℏΓ=Δ one obtains Heff

d ¼ϵ0ðj↑ih↑jþj↓ih↓jÞþ
ð2ϵ0þUÞj2ih2jþℏΓcosðϕÞðj0ih2jþj2ih0jÞ, where the last
off-diagonal term hybridizing the even-parity states is a
manifestation of the proximity effect [37]. Performing
the same unitary transformation on the current operator
I one obtains at the first two nonvanishing orders Ieff ¼
Ið1Þ þ Ið2Þ, where Ið1Þ ¼ ðe=ℏÞPσ;α¼�DασCασ, Ið2Þ¼
−eΓsinðϕ=2Þðj0ih2jþj2ih0jÞ, withDþσ¼jσih0jþsσj2ihσ̄j,
Dþσ ¼ D†

−σ, s↑;↓ ¼ �1, Cασ¼iα
P

XðsXtX=2Þ
P

kðukγᾱXkσ−
sσv−keiαϕXγαX−kσ̄Þ. The Bogoliubov operators γαXkσ
diagonalize the BCS Hamiltonian of lead X: HX ¼P

kσEkγ
þ
Xkσγ

−
Xkσ with γþXkσ and γ−Xkσ indicating the creation

and destruction operator for energy Ek ¼ ðξ2k þ Δ2Þ1=2.
Finally ukðvkÞ ¼ ½ð1=2Þð1� ξk=EkÞ�1=2 and sL;R ¼ �1.
Born-Markov description.—In order to give a quantita-

tive description of the dynamics we proceed by treating the
coupling to the environment by a Born-Markov approxi-
mation [35]. We will regard the quasiparticles in the
superconductor and the EM excitations as a Markovian

(a) (b)

FIG. 1. (a) Representation of the Josephson junction formed,
for instance, by a carbon nanotube quantum dot bridging two
superconductors. (b) Schematics of the transitions between the
Andreev bound states induced by incoherent Γij and coherent Ω
perturbations.
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environment. We describe the stationary distribution of
quasiparticles as an equilibrium one characterized by a
temperature Tqp ≫ TEM, as it appears to be the case in
several experiments [20,21,23]. Following the standard
procedure and tracing out the quasiparticles and the EM
fluctuations the equation for the reduced density matrix ρ
for the degrees of freedom of the dot reads

_ρðtÞ ¼ −ði=ℏÞ½Heff
d ðtÞ; ρðtÞ� þ ðℏ=eÞ2LCϕ ½Ið2Þ; Ið2Þ�

þ
X
ασ

fLCασN
½Dασ; D

†
ασ� þ LCασA

½Dασ; Dασ̄�g: ð2Þ

Here ℏ2LC½A;B� ¼ −
Rþ∞
0 dτfCðτÞ½A; Bðt − τ; tÞρðtÞ� þ

Cð−τÞ½ρðtÞAðt − τ; tÞ; B�g, and we have defined the normal
CασN ðtÞ ¼ hCασðtÞC†

ασð0ÞiCϕðtÞ and anomalous CασA ðtÞ ¼
hCασðtÞCασ̄ð0ÞiCϕðtÞ quasiparticle correlation functions.
The second term of the right-hand side of Eq. (2) affects
the evolution of only the even-parity states, since Ið2Þ has
nonvanishing matrix elements only in this subspace. By
contrast, the third and fourth terms, which are generated by
the ðℏ=eÞIð1Þ ~ϕ term, allow a change in the parity of the dot.
This is possible since Ið1Þ describes the transfer of one
electron from (to) the leads to (from) the dot by the photon
assisted destruction (creation) of a quasiparticle in the
leads. The correlation functions can be evaluated (see the
Supplemental Material [38]) and the master equation can
then be solved numerically for a given choice of ZðωÞ by a
projection on the Floquet basis [39]. In the following we
will discuss different regimes for which the analytical and
numerical results will be compared.
Nondriven case.—When the driving term is absent

(ϵ1 ¼ 0) the effective Hamiltonian can be easily diagonal-
ized. The four states split into a degenerate doublet of
odd parity at energy ϵ0 and a nondegenerate pair of
states generated by the hybridization of the even-parity
states j0i and j2i: j−i ¼ cosðβÞj0i þ sinðβÞj2i and jþi ¼
− sinðβÞj0i þ cosðβÞj2i. Their energy reads ϵ�¼ϵ0 þ
U=2�f½ℏΓcosðϕ=2Þ�2þðϵ0þU=2Þ2g1=2 with tan β ¼
ϵ−=ℏΓ cosðϕ=2Þ. In this limit, and neglecting the environ-
ment, the transition from 0 to the π phase is particularly
simple. Depending on the value of U and ϵ0 the ground
state can be either the even-parity state j−i (for ϵ− < ϵ0) or
the two degenerate odd-parity states jσi (for ϵ− > ϵ0).
The current is simply obtained by the evaluation of
the current operator on the ground state and it vanishes
for the odd-parity states, while it equals I−− ¼
−eΓ sinð2βÞ sinðϕ=2Þð¼ −IþþÞ in the j−i state. To the
next order in Γ=Δ the current shows a small negative value
in the odd-parity state (see the Supplemental Material [38]
or Ref. [9]). In the following we will use the information on
the parity of the occupied state to distinguish between the 0
and the π phase. We can now discuss the effect of the
environment, as predicted by Eq. (2). In the absence of
driving one can show that the density matrix becomes

diagonal in the eigenstate basis of Heff
d and the effect of the

environment reduces to a description of incoherent tunnel-
ing between states. Neglecting the principal parts in Eq. (2)
we obtain an explicit expression for the rates [see Fig. 1(b)
and the Supplemental Material [38] for details]. We assume
kBTEM ≪ Δ and Re½ZðωÞ� ¼ γω2 for ω≲ Δ [40], and we
approximate JðωÞ ¼ γω. One obtains

Γþ− ¼ 2πγðϵþ − ϵ−ÞΓ2cos2ð2βÞsin2ðϕ=2Þ; ð3Þ

Γaσ=σa¼ γ
Δ2

ℏ2
ΓΞ

�
kBTqp

Δ

�
ð1∓auÞ½1�ðϵa−ϵ0Þ=Δ� ð4Þ

with a ¼ �, Γ−þ ¼ 0, ΞðxÞ ¼ e−1=x
ffiffiffiffiffiffiffiffiffiffi
πx=8

p
, and

u ¼ sin 2β cosðϕ=2Þ. (Note that β depends on ϕ and the
expressions for the rates are correctly 2π periodic in ϕ.)
According to our approximation the energy dependence of
the rate is very weak, since jϵa − ϵ0j ≪ Δ. This implies that
the energy ordering of the two states has very little effect
on the parity-breaking rates. The reason is clear: the
transition from one state to the other is possible thanks
to a quasiparticle of energyΔ, which has to be present in the
environment. An electron can then be added or removed
from the dot, and the excess energy is absorbed by a
photon. The relative energy of the initial and final states of
the dot multiplet is small with respect to Δ, and thus in the
end the energy ordering will not be important. In other
terms the coupling to the environment will not allow a
relaxation of the dot to its lowest energy state, but will
induce instead transitions from the 0 to the π states. The
average measured current becomes then simply I−−ρ−−: the
magnetic states do not carry current, and the state jþi
relaxes very rapidly to the state j−i, since this transition
does not need the participation of the rare quasiparticles.
The final result is that the 0-π transition can be completely
washed out in the average current. This is clearly visible
in Fig. 2, where the numerical and analytical solution of
Eq. (2) as a function of U for ϕ ¼ π=2 is compared to the
prediction of the system not coupled to the environment.
The former has a smooth behavior following the U
dependence of I−−, while the latter has a sharp jump. A
similar picture is obtained as a function of ϵ0=Γ.
Effect of driving.—An experimental way of testing the

state of the junction is to irradiate the gate with a microwave
field. The resulting modulation in time of ϵdðtÞ is a
perturbation that cannot change the parity of the junction.
Since the odd-parity states are degenerate, the ac field
can only induce resonant transitions between the even-
parity states for small values of the detuning δ ¼ ω − δþ−.
Close to the resonance the dynamics can be described
by performing a rotating-wave approximation (RWA)
that gives for the density matrix in the rotating frame
~ρaā ¼ ρaāeiaωt, ~ρaa ¼ ρaa
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_~ρaa ¼ −i
Ω
2
½~ρāa − ~ρaā� − ðΓaā þ 2ΓaσÞ~ρaa

þ Γāa ~ρā ā þ 2Γσa ~ρσσ; ð5Þ

_~ρaā ¼ −i
Ω
2
½~ρā ā − ~ρS;aa�

þ ½2iaδ − ðΓaā þ Γāa þ 2Γaσ þ 2ΓāσÞ�~ρaā=2 ð6Þ

with ~ρσσ ¼ ð1 − ~ρþþ − ~ρ−−Þ=2, ~ρ↑↓ ¼ ~ρ↓↑ ≈ 0, ~ρāa ¼ ~ρ�aā,
and ℏΩ ¼ ϵ1 sinð2βÞ. As in the optical Bloch equations,
when Ω ≫ Γþ−;Γaσ the coherence terms are important for
the time evolution of the system. The rates implying the
quasiparticles are much smaller than all the other quantities
appearing in the master equation. Using this fact one can
solve the equations for the block þ=− for a given ρσσðtÞ
and then solve separately the resulting equation for ρσσ.
This gives at vanishing TEM

ρþþ ¼ ½1þ 2Γ−σ=
P

aΓσa�−1ðΩ=2Þ2
δ2 þ ðΓ2þ− þ Ω2ð1þ θÞÞ=4 ð7Þ

with θ ¼ ð2Γþσ þ
P

aΓσaÞ=ð2Γ−σ þ
P

aΓσaÞ and
ρþþ=ρ−− ¼ ðΩ=2Þ2=½δ2 þ ðΓ2þ− þΩ2Þ=4�. Equation (7)
describes a typical resonant behavior for the populations
as it can be seen in the inset of Fig. 2. At resonance (δ ¼ 0)

the populations equilibrate so that ρþþ¼ρ−−¼1−2ρσσ ¼P
aΓσa=2

P
aðΓaσþΓσaÞ. Since typically the rates are of

the same order of magnitude at resonance ρþþ ≈ 1=4. The
average current hIi is simply

P
aρaaIaa and it is strongly

modulated near the resonances. The resonance is visible in
both the regions where the 0 and π phase would be stable.
The narrow dip in Fig. 2 for U=ℏΓ ≈ 8.0 is a two-photon
resonance described by the full numerical solution
of Eq. (2).
The slow fluctuations between the σ and � doublets

induce a strong telegraph noise, since the current in the
four states is very different and the fluctuations are slow.
To estimate the intensity of the current noise we assume
that all current fluctuations are due to the transitions among
the four states, each one having a different value for the
stationary current (specifically Iþþ ¼ −I−− and Iσσ ¼ 0).
In the absence of driving one finds that the current noise
reads S ¼ 4Γσ−Γ−σI2−−=ðΓσ− þ 2Γ−σÞ3, giving a very large
Fano factor F ¼ S=2eI of the order of eΔ=kBTqp . We note
that a strong telegraph noise has been very recently
observed in atomic point contact junctions [21]. In that
experiment the Coulomb blockade plays no role, but the
coupling to the quasiparticles has a very similar behavior.
The driving reveals also an unexpected maximum of the

population ρþþ for U ¼ 3Γ. This is the value for which
2ϵ0 þ U ¼ 0 and the j0i and j2i states are degenerate. At
this point the matrix element entering the rate Γþ−
vanishes. The population of the excited state generated
by the nonresonant driving can relax to the j−i state only
by passing through the jσi states, with very low rates. This
allows a large population of the excited state with a
consequent negative contribution to the supercurrent.
Conclusion.—We have investigated the effect of a

coupling to the quasiparticles and the EM environment
on the 0-π transition. In a regime where the approximations
can be well controlled we have shown that the quasiparticle
scattering induces transitions between the 0 and π states,
with a consequent washing out of the transition. We found
that this induces large current fluctuations, and that the state
of the junction could be investigated by driving the gate
with an ac voltage. The main reason for the smoothing
of the transition is the fact that the excess energy of the
quasiparticles allows fluctuations from the thermodynam-
ical ground state and the first excited state. This effect is
very strong in the regime where we work, since Δ is the
largest energy scale, but it will be present also for
intermediate values of the gap. The theory we present
indicates clearly that the effect of quasiparticles can be
dramatic. The question of the crossover to the thermody-
namical equilibrium when Δ is of the same order or smaller
than the other energy scales remains open and calls for
further investigations. The results and the methods pre-
sented are relevant also for the understanding of the
tunneling spectroscopy of Andreev bound states in systems
where Coulomb interaction is present [5,19,41]. The issue

FIG. 2 (color online). Average current hIi as a function of
Coulomb repulsion U. The black dashed curve results from
the thermodynamic arguments in the absence of driving. The
full red (dashed blue) curve is the numerical solution of the
Floquet master equation in the presence (absence) of ac
driving. The red dash-dotted curve is the outcome of the
optical Bloch equations in the RWA approximation. Inset: the
corresponding plain (dashed) numerical curves for the pop-
ulations ρþþ; ρ−−, and 2ρσσ of the Andreev bound states in
the presence (absence) of ac driving. The parameters describ-
ing the Josephson junction are common to both plots:
Δ=ℏΓ¼ 10.0;ϵ0=ℏΓ¼ −1.5;ϵ1=ℏΓ¼ 0.25;ϕ¼ π=2;ω=Γ¼ 2.5;
kBTEM=Δ¼ 0; kBTqp=Δ¼ 1=20, and γΓ2 ¼ 1.4 × 10−4.
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of the stability of Andreev bound states with respect to the
quasiparticle scattering has also a strong relevance for the
observation of Majorana states, which should be subject to
a similar dynamics [42].
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