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Artificial graphene consisting of honeycomb lattices other than the atomic layer of carbon has been
shown to exhibit electronic properties similar to real graphene. Here, we reverse the argument to show that
transport properties of real graphene can be captured by simulations using “theoretical artificial graphene.”
To prove this, we first derive a simple condition, along with its restrictions, to achieve band structure
invariance for a scalable graphene lattice. We then present transport measurements for an ultraclean
suspended single-layer graphene pn junction device, where ballistic transport features from complex
Fabry-Pérot interference (at zero magnetic field) to the quantum Hall effect (at unusually low field) are
observed and are well reproduced by transport simulations based on properly scaled single-particle tight-
binding models. Our findings indicate that transport simulations for graphene can be efficiently performed
with a strongly reduced number of atomic sites, allowing for reliable predictions for electric properties of
complex graphene devices. We demonstrate the capability of the model by applying it to predict so-far
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unexplored gate-defined conductance quantization in single-layer graphene.
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Graphene is a promising material for its special electrical,
optical, thermal, and mechanical properties. In particular,
the conic electronic structure that mimics two-dimensional
(2D) massless Dirac fermions has attracted much attention
on both the academic and industrial sides. Soon after the
“debut” of single-layer graphene [1,2] and the subsequent
confirmation of its relativistic nature [3—5], the exploration
of Dirac fermions in condensed matter has been further
extended to honeycomb lattices other than graphene,
including optical lattices [6-8], semiconductor nanopattern-
ing [9-12], molecular arrays on Cu(111) surfaces [13],
or even macroscopic, dielectric resonators for microwave
propagation [14,15], all of which have been shown to
exhibit similar electronic properties as real graphene and
hence are referred to as artificial graphene [16].

Here, we reverse the argument to show that transport
properties of real graphene can be captured by simulations
using “theoretical artificial graphene,” by which we mean a
honeycomb lattice with its lattice spacing a different from
the carbon-carbon bond length a, of real graphene; see
Fig. 1. From a theoretical point of view, this can be
achieved only if the considered theoretical artificial lattice,
which will be shortly referred to as artificial graphene or
scaled graphene, has its energy band structure identical to
that of real graphene. In this Letter, we first derive a simple
condition, along with its restrictions, to achieve the band
structure invariance of graphene with its bond length scaled
from a; to a, even in the presence of a magnetic field.
We then prove the argument by presenting transport
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measurements for an ultraclean suspended single-layer
graphene pn junction device, where ballistic transport
features from Fabry-Pérot interference to the quantum
Hall effect are observed and are well reproduced by
quantum transport simulations based on the scaled gra-
phene. To go one step further, we demonstrate the capabil-
ity of the scaling approach by applying it to uncover one of
the experimentally feasible yet unexplored transport
regimes: gate-defined zero-field conductance quantization.

We begin our discussion with the standard tight-binding
model for 2D graphite [17], i.e., bulk graphene, and focus

FIG. 1 (color online).

Schematic of a sheet of (a) real graphene
and (b) scaled graphene and their conical low-energy band
structures. In (a), the lattice spacing ay ~ 0.142 nm, the hopping

energy ty ~ 2.8 eV, and the Fermi velocity v% ~ 10 cms™".
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on the low-energy range (|E| < 1 eV) which is addressed in
most graphene transport measurements. In this regime, the
effective Dirac Hamiltonian H.; = vy6 - p associated with
the celebrated linear band structure E(k) = thvp|k|
describes the graphene system well. Here, vy~ 108 cms™!
is the Fermi velocity in graphene, and 7k, the eigenvalue
of the operator ¢ - p [Pauli matrices ¢ = (o,,0,) act on the
pseudospin properties], is the quasimomentum with k
defined relative to the K or K’ point in the first Brillouin
zone. In terms of the tight-binding parameters, one replaces
hvp with (3/2)tgag, where 7y~2.8 eV is the nearest
neighbor hopping parameter and a =~ 0.142 nm is the lattice
site spacing, i.e., Eo(k) = (3/2)tyaok forreal graphene [18].
Now, we consider the scaled graphene described by the
same tight-binding model but with hopping parameter 7 and
lattice spacing a and introduce a scaling factor s, such that
a = syay. The real and scaled graphene sheets along with
their low-energy band structures are schematically sketched
in Fig. 1. The low-energy dispersion for scaled graphene
is naturally expected to be E(k) = (3/2)tak. Thus, to keep
the energy band structure unchanged while scaling up the
bond length by a factor of s, the condition

a = sgay, t:t—o (1)
5t
becomes self-evident.

Clearly, Eq. (1) applies only when the linear approxi-
mation is valid. In terms of the long wavelength limit, this
means that the Fermi wavelength should be much longer
than the lattice spacing: Ar > a, from which using Eq. (1)
the following validity criterion can be deduced:

: 2)
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where E,, is the maximal energy of interest for investigating
a particular real graphene system. Considering graphene on a
typical Si/300 nm SiO, substrate, the usually accessed
carrier density range is less than 10'> cm™2 [1]. This implies
that the energy range of interest lies within |E,.| < 0.4 eV,
leading to s, < 66 from Eq. (2) (using 7, = 2.8 eV). For
suspended graphene, typical carrier densities can hardly
reach 10'> cm™2 [19], so that |E,| < 0.1 eV allows for a
larger range of the scaling factor s, < 264.

In the presence of an external magnetic field, the Peierls
substitution [20] is the standard method to take into account
the effect of a uniform out-of-plane magnetic field B,
within the tight-binding formulation. In addition to the long
wavelength limit (2), the validity of the Peierls substitution,
however, imposes a further restriction for the scaling [21]:
lp > a, where lp = \/h/eB, is the magnetic length. In
terms of a = syag given in Eq. (1), this restriction reads

sp < I , 180

ap VBZ’

3)

where B, is in units of T. Equations (1)—(3) complete the
description of band structure invariance for scaled graphene.

The above discussion is based on bulk graphene, but the
listed conditions apply equally well to finite-width gra-
phene ribbons. To show a concrete example of band
structure invariance under scaling, we consider a 200-
nm-wide armchair ribbon and compare the band structures
of the genuine case with s, = 1 and the scaled case with
sy =4 in Fig. 2(a) for B, = 0. The scaled graphene band
structure well matches the genuine one at low energy |E| <
0.1 eV and starts to deviate at higher energy but stays rather
consistent within the shown energy range of |E| < 0.2 eV.
Both of the band structures are well bound by the linear
Dirac model that corresponds to the bulk graphene. The
band structure invariance remains true when a magnetic
field is applied, as seen in Fig. 2(b), where B, =5 T is
considered. The pronounced flat bands in both
cases match perfectly with the relativistic Landau levels

E, =sgn(n)\/2eB hvE|n| solved from the Dirac
model [3-5,21], where n; =0,+£1,42,.... The band
structure invariance based on Eqgs. (1)—(3) can be easily
shown to hold also for zigzag graphene ribbons.

Having demonstrated that under proper conditions
(1)—(3) the scaled graphene band structure can be identical
to that of real graphene, we next perform quantum transport
simulations for a real graphene device, using the scaled
graphene. To this end, we have fabricated ultraclean
suspended graphene pn junctions as sketched in Fig. 3(a).
First, bottom gates were prepatterned on a Si wafer with
300 nm SiO, oxide. Afterwards, the wafer was spin coated
with lift-off resist, and the graphene was transferred on top
following the method described in Ref. [22]. Palladium
contacts to graphene were made by e-beam lithography and
thermal evaporation, and the device was suspended by
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FIG. 2 (color online). Band structure consistency check using
an armchair graphene ribbon with width 200 nm (a) in the
absence of magnetic field and (b) in the presence of a uniform
magnetic field B, = 5 T. The comparison is done for both (a) and
(b) between the genuine graphene with s, =1 and scaled
graphene with s, = 4, which correspond to chain numbers N, =
800 and N, = 200, respectively.
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FIG. 3 (color online). (a) Sketch of the suspended graphene pn
junction device with suspension height 4 = 600 nm, contact
spacing L = 1680 nm, and average flake width W = 2125 nm.
(b) Mean carrier density as a function of V, =V, = V, based
on a 3D electrostatic simulation. Experimental and theoretical
data of the two-terminal conductance at (c),(d) B, = 0 and (e),
(f) B, =0.2 T. Both (c¢) and (e) were measured at temperature
T = 1.4 K, while the simulations were done at zero temperature
using (d) s; = 100 and (f) s; = 50 scaled graphene.

exposing and developing the lift-off resist. Finally, the
graphene was cleaned by current annealing at 4 K. The
fabrication method is described in Refs. [23,24] in detail.

Following the device design of our experiment [sketched
in Fig. 3(a)], we first build a three-dimensional (3D)
electrostatic model to obtain the self-partial capacitances
[25,26] of the individual metal contacts and bottom gates,
which are computed by the finite-element simulator FENICS
[27] combined with the mesh generator GMSH [28].
The extracted self-partial capacitances from the electrostatic
simulation provide us the realistic carrier density profile
(see the Supplemental Material [29]) n(x, y) at any combi-
nation of the left and right bottom gate voltages V; and Vp,
respectively. In Fig. 3(b), we plot the mean carrier density 7
averaged over the whole suspended graphene region as a
function of V, =V, = V. The slope reveals a charging
efficiency of the connected bottom gates of about
10" em=2 V-1, which is slightly lower than the experimen-
tal value of 1.24 x 10'® cm=2 V~! extracted from the uni-
polar quantum Hall data [29].

In the absence of magnetic field, the Fermi energy
as a function of carrier density within the low-energy
range can be well described by the Dirac model E(n) =
sgn(n)hvp+/x|n|. This suggests that for a given carrier
density at (x,y), applying a local energy band offset
defined by V(x,y) = —sgn[n(x,y)|Avy+/z|n(x,y)| guar-
antees that the locally filled highest level fulfills the amount
of the simulated carrier density n(x, y) and is globally fixed
at £ =0 for all (x,y). We therefore consider the model
Hamiltonian

Hmodel = Zv(xiv yi)cjci - l(Sf)(Z;CZer (4)
i ij

and apply the Landauer-Biittiker formalism [30] to calcu-
late the transmission function 7 at energy E =0 and
temperature zero. In Eq. (4), the indices i and j run over
the lattice sites within the scattering region defined by an
artificial graphene scaled by s;, and the second term
contains the nearest neighbor hopping elements with
strength #(s) given in Eq. (1).

For zero-field transport, we compute the conductance
map G(Vg,V;) from the transmission function 7' using
G = (e*/h)[T~" +R./(h/e*)]™", where the contact resis-
tance is deduced from the quantum Hall measurement to be
R, ~1080Q ~ 4.2 x 1072(h/e?). The measured and simu-
lated conductance maps are reported in Figs. 3(c) and 3(d),
respectively, both exhibiting two overlapping sets of Fabry-
Pérot interference patterns in the bipolar blocks similar
to Refs. [31,32]. Strikingly, the theory data reported in
Fig. 3(d) are based on a scaled graphene with s, = 100
because of the rather low density (energy) in our ultraclean
device. From the estimated maximal carrier density
[Fig. 3(b)], we find |E .| ~ 28 meV, such that Eq. (2)
roughly gives s, < 10°, suggesting that s + = 1001is accept-
able. Simulations with smaller s, have been performed and
do not significantly differ from the reported map.

To correctly account for the magnetic field effect in the
transport simulation, the first step, similar to the zero-field
case, is to extract the proper energy band offset from the given
carrier density through the carrier-energy relation, for which
an exact analytical formula does not exist. Numerically, the
carrier density as a function of energy and magnetic field
n(E, B,) can also be computed using the Green’s function
method (see the Supplemental Material [29]) and sub-
sequently provide E(n, B.). The desired energy band offset
is then again given by the negative of it. Thus, the magnetic
field in the transport simulation requires, in addition to the
Peierls substitution of the hopping parameter, the modifica-
tion on the on-site energy term of Eq. (4) V(x;,y;) —
V(x;,yi;B.) = —E(n(x;,y;), B.), where n(x;,y;) is
obtained from the same electrostatic simulation and is
assumed to be unaffected by the magnetic field; i.e., we
assume the electrostatic charging ability of the bottom gates
is not influenced by the magnetic field.

Atfield strength B, = 0.2 T, Fig. 3(e) shows the measured
conductance map and is qualitatively reproduced by the
simulation [Fig. 3(f)] done by an s, = 50 scaled graphene
in the presence of weak disorder. We observe very good
agreement in the conductance range as well as in the
conductance features in the unipolar blocks. In the bipolar
blocks, however, the simulation reveals a fine structure
that is found to be sensitive to spatial and edge disorder
but is not observed in the present experimental data.
Nevertheless, the conductance in the bipolar blocks varies
between 0 and 2¢?/h in both experiment and theory, and
neither of them exhibits the fractional plateaus [33]. Thus, the
bipolar blocks of Figs. 3(e) and 3(f) reveal a conductance
behavior due to the ballistic smooth graphene pn junctions
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very different from the diffusive sharp ones [34-36]. Note
that here we have considered Anderson-type disorder by
adding to the model Hamiltonian (4) the potential term
S Uiclc;, where U, is a random number U; € [~Ugs/2,
Uygis/2] with disorder strength Ug, = 6 meV used in the
theory map of Fig. 3(f). The quantized conductance in the
unipolar blocks of the simulated map is found to be robust
against the disorder potential, whose quantitative effect is
yet to be established for the scaled graphene and is beyond
the scope of the present discussion.

Finally, we apply the scaling approach to uncover one
of the experimentally feasible but unexplored transport
regimes: gate-defined zero-field conductance quantization
of single-layer graphene. We consider a ballistic graphene
device with encapsulation of hexagonal boron nitride
[22,37] subject to a global backgate and a pair of trap-
ezoidal bottom gates, forming a 150-nm-wide gate-defined
channel in the right part of the graphene flake. The device
layout is sketched in the left inset of Fig. 4(a). Because of
the screening of the bottom gates, the carrier density in the
bottom-gated region ny,,, and the backgated region ny, can
be independently controlled. The ideal carrier density
profile within the modeled 2 x 2 ym? flake is shown in
the right inset of Fig. 4(a), where the left and right leads are
attached at x = 1 um.

In the unipolar configuration (7,,1;,,, > 0), electrons can
freely tunnel between the bottom- and backgated regions,
such that no conductance quantization is expected. In the
bipolar configuration (npgn0, < 0), however, Klein colli-
mation [38] suppresses oblique tunneling across the pn
interfaces, separating the conduction through the narrow
channel from that through the ny,, region, and the total
conductance is expected to vary in discrete quanta of 4e*/h
(valley and spin degeneracies) when tuning the channel
density ny,. This is indeed observed in the 2D map of the
transmission function T (7, 710e) reported in Fig. 4(b),
assuming fixed density of 1.5 x 10'' cm™2 in the left and
right leads (mimicking n-doping contacts). A line cut at
Npog & —5.14 x 10° cm~2 is shown in Fig. 4(a), where a clear
profile of the quantized conductance plateaus in the bipolar
regime can be seen.

Contrary to the reported signatures of quantized con-
ductance of graphene nanoribbons [39] and suspended
graphene nanoconstrictions [40], the proposed scheme here
is based on a flexible and tunable way of electrical gating
using unetched wide graphene such that no localization is
expected, and the fabrication process does not require any
poorly controlled etching or electrical burning process. In
addition, the conductance plateaus predicted here have a
rather different origin compared to the usual size quantiza-
tion (e.g., Ref. [41]). This is illustrated by showing the band
structure, considering a unit cell cut from the right part of
the same model flake [marked by the dashed stripe in the
right inset of Fig. 4(a)]. Examples of the resulting hybrid
band structures are shown in Figs. 4(c)—4(f), each composed
of a dense Dirac cone from the outer wide (71;,0) region and
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FIG. 4 (color online). (a) Two-terminal transmission 7 as a
function of backgate carrier density ny, at fixed bottom gate
carrier density 7o, for a hexagonal-boron-nitride-sandwiched
ballistic graphene device (left inset), assuming a flake size of
2 x 2 um? subject to the carrier density profile sketched in the
right inset. (b) 2D map of the transmission function 7'(npg, 1o );
the dashed white line indicates the line trace of (a). (¢c)—(f) Band
structures computed by a unit cell cut from the right part of the
same model flake, as marked by the dashed stripe shown in the
right inset of (a). The carrier density configurations of (c)—(f) are
indicated by the symbols (A, v, ¢ and [J) marked at the middle
corresponding to those marked in (a) and (b). Both T and E; are
computed based on clean armchair graphene scaled by s, = 50.

discrete bands from the inner narrow (ny,) region. The
former is responsible for a background contribution to the
total T leading to a conductance minimum well above 0
(contrary to, e.g., Ref. [40]), and the latter influences 7 in a
different way depending on the relative polarities of the two
regions. In the unipolar examples of Figs. 4(c) and 4(d),
bands of the two regions mix together, such that 7 changes
continuously. In the bipolar examples of Figs. 4(e) and 4(f),
T changes abruptly whenever a discrete band is newly
populated or depopulated [such as Fig. 4(f)].

In conclusion, we have shown that the physics of real
graphene can be well captured by studying properly scaled,
artificial graphene. This important fact indicates that the
number of lattice sites required in transport simulations for
graphene based on tight-binding models need not be as
massive as in actual graphene sheets. The scaling parameter
s, also applicable to bilayer graphene [42], scales down the
amount of the Hamiltonian matrix elements of the simulated
graphene flake by a factor of s;“ and hence strongly reduces

the computation overhead (see the Supplemental Material
[29]), making previously prohibited micron-scale 2D devi-
ces accessible to accurate simulations. Our findings advance
the power of quantum transport simulations for graphene
in a simpler and more natural way as compared to the

036601-4



PRL 114, 036601 (2015)

PHYSICAL REVIEW LETTERS

week ending
23 JANUARY 2015

finite-difference method for massless Dirac fermions [43],
allowing for reliable predictions for electric properties of
complex graphene devices. The illustrated example of
applying the scaled graphene to explore one of the new
transport regimes—gate-defined zero-field conductance
quantization—can be one of the next challenges for
graphene transport experiments.
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