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The phase diagram of two-dimensional continuous particle systems is studied using the event-chain
Monte Carlo algorithm. For soft disks with repulsive power-law interactions ∝ r−n with n≳ 6, the recently
established hard-disk melting scenario (n → ∞) holds: a first-order liquid-hexatic and a continuous
hexatic-solid transition are identified. Close to n ¼ 6, the coexisting liquid exhibits very long orientational
correlations, and positional correlations in the hexatic are extremely short. For n≲ 6, the liquid-hexatic
transition is continuous, with correlations consistent with the Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) scenario. To illustrate the generality of these results, we demonstrate that Yukawa particles
likewise may follow either the KTHNYor the hard-disk melting scenario, depending on the Debye-Hückel
screening length as well as on the temperature.
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Two-dimensional particle systems with short-range inter-
actions may form solids [1] but cannot acquire long-range
positional order [2]. Rather, two-dimensional solids are
characterized by long-range orientational and quasi-
long-range positional order, so that positional correlation
functions decay algebraically. In the liquid phase, both
orientational and positional order are short ranged, and the
corresponding correlation functions decay exponentially.
An intermediate hexatic phase may also exist [3]. It is
characterized by short-range positional and quasi-long-range
orientational order.
Within the Kosterlitz-Thouless-Halperin-Nelson-Young

(KTHNY) theory of two-dimensional melting [3], these
two symmetry-breaking transitions arise from the sub-
sequent unbinding of topological defects: In the solid,
dislocations are bound in pairs, whereas in the hexatic,
free dislocations may exist. The dislocations then decom-
pose into free disclinations which break orientational
order and yield the isotropic liquid. Both phase tran-
sitions are of the continuous Kosterlitz-Thouless type,
although a first-order liquid-hexatic transition remains
possible within the KTHNY framework. Alternative
theories of two-dimensional melting propose a conven-
tional first-order liquid-solid transition, in the absence of
a hexatic phase [4,5]. These scenarios commonly involve
the condensation of defects into grain boundaries and
related aggregates [6–8].
Over the decades, it has been extremely difficult to

decide, from theory, simulation, or experiments, which
of the above melting scenarios applied to specific two-
dimensional models. It was established only very recently
that the fundamental hard-disk model has a continuous
solid-hexatic transition but a first-order hexatic-liquid
transition [9]. This scenario continues to apply for three-
dimensional hard spheres tightly confined between parallel

plates [10]. Indications for such a scenario were also found
for two-dimensional Yukawa particles [11].
Experimentally, evidence for liquid-hexatic coexistence

was reported both for sterically stabilized uncharged
colloids [12] and for charged colloids [13]. In complex
plasmas, grain-boundary melting was reported [14]. The
KTHNY theory was confirmed experimentally for super-
paramagnetic colloids [15]. Other two-dimensional sys-
tems that melt include electrons pinned at a liquid helium
interface [16] and surface-adsorbed atomic layers [17].
In this Letter, we systematically study two-dimensional

melting for repulsive pair interactions using computer
simulations. We first concentrate on the inverse power-
law pair interaction UðrÞ ¼ εðσ=rÞn. This family of poten-
tials includes hard disks of diameter σ (for n → ∞) but also,
at intermediate n, the soft interactions typically found in
colloidal particles, and long-range interactions such as
dipolar (for n ¼ 3) [15] and Coulomb forces (for n ¼ 1)
[16]. We will establish that for large enough n, the hard-
disk melting scenario with its first-order liquid-hexatic
transition is preserved. Around n ¼ 6, the system changes
over to the classical KTHNY scenario with two continuous
transitions. The hexatic phase is firmly established for all
parameters studied. To illustrate the generality of our
findings, we approximately map state points of soft disks
onto those of particle systems with Yukawa pair inter-
actions by tuning the Debye-Hückel screening length and
the temperature. We again identify both the KTHNY and
the hard-disk scenarios.
The soft-disk interaction sets no separate energy scale,

and we may put βε ¼ 1, where β ¼ 1=kBT is the inverse
temperature. The phase diagram only depends on the
dimensionless density ϕ ¼ σ2N=V, which is related to
the dimensionless interaction strength Γ ¼ βεðπϕÞn=2.
Length scales can be expressed in terms of the interparticle
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distance d ¼ ðπN=VÞ−1=2. In these units, the pair inter-
action is βU ¼ Γ × ðd=rÞn.
To accommodate the large correlation lengths inherent

in two-dimensional melting, we consider systems of
6.5 × 104, 2.6 × 105, and 1.0 × 106 particles. To equilibrate
these large systems, we use the event-chain Monte Carlo
(ECMC) algorithm [9], recently parallelized [18] and
extended to continuous interactions [19]. The ECMC
algorithm displaces a single active particle [red bullet in
Fig. 1(a)] in a fixed direction in successive infinitesimal
steps corresponding to a continuous Monte Carlo time.

Instead of rejecting a move because of a potential barrier
between two particles (dashed line), the displacement is
transferred from one particle to the other [Fig. 1(b)]. In this
way, cooperative cluster moves are built up. The algorithm
is most easily understood for hard-sphere systems, but the
concept of pairwise collision events carries over to con-
tinuous interactions. The ECMC algorithm samples the
canonical ensemble exactly [19]. It is implemented effi-
ciently using an event-driven approach and mixes faster
than conventional local Monte Carlo algorithms [19].
Truncating the interaction ~UðrÞ ¼ U½minðr; rcÞ� at a cutoff
distance rc amounts to neglecting some collision events
[20]. For soft disks with n ≥ 6, using the cutoff rc ¼ 1.8σ,
less than 2 × 10−3 of collision events are missed [Fig. 1(e)].
The ECMC algorithm yields the pressure as a zero-cost
by-product of the simulation [19], and allows for the
construction of the equation of state. For the cutoff
rc ¼ 1.8σ, the pressure is reduced by about 1.1% with
respect to the usual cutoff 2.6σ, but the phase boundaries
[e.g., the liquid-hexatic kink in Fig. 1(f) at ϕ ¼ 1.506] are
not moved, as we checked explicitly.
For each of the n studied, we find extended liquid,

hexatic, and solid phases [see Figs. 2(a)–2(d)]. In the liquid,
both positional correlations and the correlations of the local
orientational order parameter Ψ6 (with Voronoi weights
[21]) are short ranged, the latter is visualized in Figs. 2(b)
and 2(e). For large n, the equation of state displays a
clear Mayer-Wood loop [22] characteristic of a first-order
transition [see Fig. 2(h); cf. Ref. [9] for a discussion of
phase coexistence in the NVT ensemble]. At n ¼ 64, the
liquid-hexatic coexistence interval is wider in density than
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FIG. 1 (color online). Event-chain algorithm for continuous
pair interactions. (a)–(d) Evolution of the algorithm for four
particles through three subsequent collision events. (e) Probability
for soft disks that a collision event takes place at a distance r
larger than the cutoff rc. The vertical dashed line is the cutoff
chosen in this work. (f) Equation of state with different cutoffs
(N ¼ 6.5 × 104, n ¼ 6).
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FIG. 2 (color online). Phase behavior of r−n soft disks for n ≥ 6. (a) Phase diagram as a function of density ϕ relative to the density
ϕhex of the pure hexatic at coexistence. The nonmonotonic liquid-hexatic coexistence interval vanishes around n ¼ 6. Symbols match
the following figures: bullets are liquid states; filled triangles hexatics, of which downward filled triangles are the hexatic at ϕhex; empty
triangles are solids. Center: Local orientational order parameter Ψ6 in N ¼ 2.6 × 105 particles, the color code is illustrated to the right.
Upper row: (b) Liquid phase at ðn;ϕÞ ¼ ð8; 1.193Þ (subset of a 1.0 × 106 configuration); (c) hexatic; (d) solid. Lower row: Coexistence
in the n ¼ 64 system: (e) pure liquid close to coexistence. (f) At ϕ ¼ 0.889, the hexatic and the liquid form stripes. (g) At ϕ ¼ 0.898,
a small bubble of liquid remains on a hexatic background of uniform orientation. (h) Equations of state with n from 6 through 1024
(solid lines correspond to N ¼ 6.5 × 104 soft disks, symbols correspond to N ¼ 2.6 × 105, ϕliq is the liquid density at coexistence,
dashed lines are for Yukawa particles).
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for hard disks (n ¼ ∞), yet qualitatively equivalent: As in
Ref. [9], we observe both stripe-shaped coexisting phases
[see Fig. 2(f)] and bubble-shaped minority phases
[Fig. 2(g)]. For smaller n, the coexistence interval narrows
[see Figs. 2(a) and 2(h)] and finally vanishes around n ¼ 6,
where the transition becomes continuous. The computa-
tional cost of long-ranged interactions due to larger cutoffs
makes large-scale simulations for n < 6 prohibitively slow.
The phase in coexistence with the liquid is a hexatic.

Since correlation functions are ambiguous in the coexist-
ence region, we consider pure hexatics above the transition,
and find short-ranged positional correlations [Fig. 3(a)]
while orientational correlations are quasi-long-ranged [see
Fig. 4(a)]. The positional correlation length ξp can be as
large as 100 interparticle distances d, but we can equilibrate
systems of sufficient size to reveal the asymptotic expo-
nential decay of the ensemble-averaged pair correlation
function gðrÞ ∝ expð−r=ξpÞ. In the lowest-density pure
hexatic, at the transition, ξp decreases strongly with n as
the coexistence interval vanishes (see Table I). At n ¼ 6,
the correlation length is on the order of the interparticle
distance d. Single-configuration pair correlations also
confirm that positional order drops from ξp ≈ 100d at
n ¼ 64 to a few neighbors at n ¼ 6 [see Fig. 3(b)].
We now turn to the analysis of orientational correlations

in the transition region. We extract the corresponding
correlation length ξ6 in the liquid from the asymptotic
exponential decay of the correlation function g6ðrÞ¼
hψ6ðriÞψ6ðrjÞδðr−rijÞi. The orientational correlation
length is large but finite in the pure liquid at coexistence.

It increases markedly from n ¼ 64 to n ¼ 8 and n ¼ 6 [see
the lower three curves in Fig. 4(a); data in Table I].
At n ¼ 6, a minute increase in density changes the

orientational order from short range to an algebraic decay
with exponent ≈ − 1

4
[Fig. 4(a)]. This agrees with the

KTHNY prediction of orientational correlations ∝ rη in
the hexatic, with η ¼ − 1

4
at the transition. Away from

the transition point, and for n > 6, the orientational
correlation function does not display clear power-law
behavior. This is also borne out by the finite-size scaling
technique of Ref. [23], computing the average orientational
order Ψ6ðLBÞ ¼ hψ6iB in sub-blocks of linear size LB.
Because of finite-size effects, the liquids at coexistence
deviate from the ideal short-range behavior [steep bold line
of slope −2 in Fig. 4(b)], but they are well beyond the
KTHNY stability limit for the hexatic (bold line of slope
− 1

4
). The n ¼ 64 and n ¼ 8 hexatics at the transition have

small slopes [Fig. 4(b), η ¼ −0.0026 and −0.10], while
for n ¼ 6, we find a value close to the stability limit,
η ¼ −0.19. Our data are thus consistent with a continuous
Kosterlitz-Thouless transition for n≲ 6, which is pre-
empted by a first-order transition for larger n.
Approaching the hexatic-solid transition, ξp increases,

and the ECMC algorithm falls out of equilibrium.
Moreover, the effective lattice constant, reduced by a finite
equilibrium concentration of defects, is a priori unknown
and the positional order in our samples is usually incom-
mensurate with the periodic boundary conditions, leading
to frustration effects. This prevents robust conclusions for
the exact density of the hexatic-solid transition density ϕhs.
Nevertheless, we can provide a lower bound for the melting
density ϕhs from the highest-density configurations that
could be molten in a N ¼ 2.6 × 105 periodic box (Table I).
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FIG. 3 (color online). (a) Pair correlation function gðx; yÞ along
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for large x=d (ensemble average of N ¼ 2.6 × 105 configurations
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Ref. [9]). (b) Two-dimensional pair correlation function gðx; yÞ
for single configurations at the same parameters. The solid line is
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40d extracted from the 2.6 × 105 configurations: Orientational
order is preserved as the positional order is lost [color code forΨ6

as in Figs. 2(b)–2(g)].
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At the hexatic-solid transition, we find no indications of a
discontinuity; in particular, the equation of state shows no
Mayer-Wood loop [Fig. 2(h)].
While the correlation lengths in the hexatic are so vastly

different in the two regimes, we observe no qualitative
difference in the structure of the KTHNY topological
defects, which we define as coordination anomalies in
the Voronoi diagram [4], even though this type of analysis
is not without problems in disordered systems [21]. The
behavior of defects is collective more so than the simple
subsequent unbinding picture would suggest. While free
dislocations (i.e., isolated pairs of a 5-and a 7-coordinated
site) exist and free disclinations are indeed heavily sup-
pressed, the majority of defects are involved in more
complex clusters. Most defects form stringlike aggregates
in which topological charges alternate, and frequently
comprise an odd number of bound dislocations. Their
classification into grain boundaries, disclinations, and
dislocations becomes ambiguous. The defect strings cir-
cumscribe patches of homogeneous orientational order,
and the liquid-hexatic transition can be viewed as the
percolation transition of the defect string network. Thus,
the liquid-hexatic transition occurs according to a grain-
boundary mechanism, similar to proposed direct liquid-
solid transitions [6,7], but starting from a hexatic phase.
The change of scenario from liquid-hexatic coexistence

to a continuous transition occurs not only in soft disks
as a function of n, but whenever the interaction forces can
be tuned between the hard-disk and long-range limits.
Effectively, only a small part of the interaction potential
is explored by the particles: For potentials that, in the
relevant range of interparticle distances, are well approxi-
mated by a soft-disk potential, the soft-disk phase behavior
should be recovered. To test this hypothesis, we use the

Yukawa interactionUðrÞ ¼ u × ðσ=rÞ exp½κð1 − r=σÞ�, and
match its first and second derivatives at r ¼ σ to the
respective derivatives of the soft-disk interaction by tuning
the effective interaction strength βu and the Debye-Hückel
screening length κ−1 [see Figs. 5(b) and 5(c)]. Indeed, we
find for the Yukawa system corresponding to soft disks with
n ¼ 32 (parameters βu ¼ 1, κ ¼ 32) a first-order transition
[see the lower dashed curve in Fig. 2(h)] into a hexatic with a
large positional correlation length ξp ∼ 100d [Fig. 5(a)].
Approximating the n ¼ 6 soft-sphere interaction, on the
other hand (βu ¼ 0.875, κ ¼ 5.85), the transition is clearly
continuous [upper dashed curve in Fig. 2(h)] and the hexatic
phase has extremely short positional correlation lengths
[Fig. 5(a)]. These findings agree qualitatively with the
results for soft disks. Thus, the change of scenarios identified
in this work should be observable experimentally, for
example, in charged colloids, planar plasmas, etc., by tuning
the Debye-Hückel screening length.
We have shown in this work that two-dimensional

melting in particle systems with short-range repulsive pair
interactions is generically a two-step transition, with a
hexatic phase between the liquid and the solid. We identify
two regimes: At large n, and for strong screening in the
Yukawa particles, we recover the hard-disk melting sce-
nario. In the hexatic phase, at large n, positional correlation
lengths are 2 orders of magnitude larger than the inter-
particle distance d. The density of positional defects is
correspondingly small. As the interaction potential
becomes softer, the nature of the hexatic changes: posi-
tional correlation lengths drop to a few d, and defects are
ubiquitous. The additional entropy due to defects stabilizes
the hexatic phase with respect to the liquid state, and
the phase-coexistence interval becomes very small. For
even smaller n ≲ 6, the liquid-hexatic transition turns
continuous, and we recover the standard KTHNY scenario.

TABLE I. Thermodynamic data for r−n soft disks: Pressure Plh
at the liquid-hexatic transition; density ϕliq and orientational
correlation length ξ6 of the liquid; density ϕhex and positional
correlation length ξp of the hexatic at coexistence. The final
column is a lower bound for the melting density (solid-hexatic).
The densities are accurate to ≈0.5%. Pressures are computed
using the truncated interaction and are thus low by at most 1.1%.
The statistical sampling error is a decade smaller [error bars in
Fig. 1(f)]. The correlation lengths are determined from the tail of
the respective correlation functions and are subject to large errors
of �10% due to the choice of ϕ. They are consistent with earlier
results for hard disks [9].

n βP1hσ
2 ϕliq ξ6=d ϕhex ξp=d ϕhs

6 38.3 1.506 180 1.507 2.6 >1.516
8 23.1 1.193 110 1.196 6.0 >1.204
12 14.7 0.998 112 1.005 13 >1.015
16 12.1 0.937 95 0.949 27 >0.960
64 9.27 0.882 61 0.904 96 >0.920
1024 9.17 0.889 65 0.913 66 >0.924
∞ 9.18 0.892 62 0.913 51 >0.919

10-1

100

101

 0  10  20

g(
x,

0)

r / d

(a) Soft disks (n = 32, φ = 0.906)

(n = 6, φ = 1.508)

Yukawa (βu = 1, κ = 32, φ = 0.906)

(βu = 0.875, κ = 5.85, φ = 1.73)

10-4

10-2

100

102

104

10-2 100 102

β U
(r

)

r / σ

(c)

1 / x6

0.875 e-5.85(x-1) / x + 0.124

10-4

10-2

100

102

104

0.5 1 1.5

βU
(r

)

r / σ

(b)

1 / x32

e-32(x-1) / x

FIG. 5 (color online). Yukawa interactions exhibiting first-order
(top) and continuous liquid-hexatic transitions. (a) Pair correla-
tion function along the x axis, as in Fig. 3(a). (b),(c) Interaction
potential of the soft disks and the Yukawa particles around r ¼ σ.

PRL 114, 035702 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

23 JANUARY 2015

035702-4



Conversely, it also appears possible to shift the liquid-
hexatic first-order transition towards higher densities. In
this case, the hexatic region and the hexatic-solid transition
can be preempted by the first-order transition, giving rise to
a direct liquid-solid transition. This has been reported for
the “core-softened” potential [24], which includes (at low
temperatures) a potential shoulder destabilizing hexagonal
order and favoring a direct solid-liquid transition at high
density. For large T, the core-softened potential of Ref. [24]
reduces to the r−14 interaction considered here, and would
consequently follow a two-step melting scenario with the
intermediate hexatic phase. Owing to the long-range nature
of interactions, the regime of extremely soft and long-
ranged potentials, n < 6, is not presently accessible to our
large-scale simulations, but no further change of scenario is
expected for even smaller n. Such systems have been
considered in experiment [15], and we expect that the
change from classical KTHNY two-step melting to a first-
order liquid-hexatic transition followed by a Kosterlitz-
Thouless-type hexatic-solid transition can be tested
experimentally.
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