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Turbulent motions in a fluid decay at a certain rate once stirring has stopped. The role of the most basic
parameter in fluid mechanics, the Reynolds number, in setting the decay rate is not generally known. This
Letter concerns the high-Reynolds-number limit of the process. In a classical grid-turbulence wind-tunnel
experiment that both reaches higher Reynolds numbers than ever before and covers a wide range of them
(104 < Re ¼ UM=ν < 5 × 106), we measure the decay rate with the unprecedented precision of about 2%.
Here U is the mean speed of the flow, M is the forcing scale, and ν is the kinematic viscosity of the fluid.
We observe that the decay rate is Reynolds-number independent, which contradicts some models and
supports others.
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Turbulence dissipates kinetic energy, and the easiest way
to see this is to let turbulence freely decay, by removing the
agitation that initially set the fluid in motion. In so doing,
one observes qualitatively that the fluid comes to rest. The
rate at which this happens is the subject at hand, and
underlies general turbulence phenomena and modeling. To
simplify the problem, the statistics of the turbulent fluctu-
ations are often arranged to be spatially homogeneous and
isotropic [1,2]. Even under these conditions, it is not
possible quantitatively to predict the decay rate; it is even
difficult precisely to measure the decay rate [3–6]. Yet
empirical constraints on the properties of decaying turbu-
lence are what is needed to advance the knowledge of the
subject.
The physics that control the decay are not fully under-

stood, to the extent that the role of the most basic parameter
in fluid mechanics, the Reynolds number, is not clear. What
is known is that toward very low Reynolds numbers, the
decay rate increases [7,8], as it also does when the spatial
structure of the turbulence grows to the size of its container
[4,9]. Here, we study the rate of decay in the limit of large
Reynolds numbers for turbulence free from boundary
effects, a rate which cannot be determined from the
previous data.
One theoretical framework predicts that the decay rate

depends on the large-scale structure of the flow, and not on
the Reynolds number once turbulence is fully developed
[2,10–13]. As the Reynolds numbers diverge to infinity, the
scale at which energy is dissipated grows arbitrarily small,
but these scales continue to dissipate energy as quickly as it
is transferred to them by the large scales. This picture is
compatible with an emerging consensus that the initial
structure of the turbulence sets its decay rate, even when the
flow is homogeneous [14–17].
There is also, however, a line of thinking that an elegant

and fully self-similar decay emerges in the limit of high
Reynolds number [14,15,18–23]. In this description,

turbulence tends to become statistically similar to itself,
when appropriately rescaled, even as it decays. Observation
of a tendency toward slower decay with increasing
Reynolds numbers would support this view [14,21–23].
Our data, however, do not show this tendency.
The issue is of practical consequence because decaying

turbulence is a benchmark for turbulence models
[8,24–26]. Not only this, but both simulations and experi-
ments can be performed easily at low Reynolds numbers,
say Re < 105; how well can their findings describe the
high-Reynolds number flows that exist in nature, where
often Re > 106? Our experiments bridge this gap, and
also contribute to a basic understanding of the nature of
turbulence. The objectives are similar to those in other
recent programs in fluid mechanics, where asymptotic
scaling behavior was sought in other types of flows [27,28].
According to dimensional reasoning, it is useful to think

of physical laws in terms of dimensionless numbers [29]. In
turbulence, these numbers include the Reynolds number Re
and a family of others that describe the initial and boundary
conditions (BCs) of the flow. Some set of these numbers
might control the decay of the turbulence. To isolate Re
effects in our experiment, we held fixed the other numbers.
That is, we fixed the BCs so that the large-scale structure of
the flow was approximately fixed. We then changed Re by
varying the viscosity of the fluid [30]. The ability to do this
was almost unique among turbulence decay experiments,
and made it possible both to cover a wider range and to
reach higher Re than ever before. In previous experiments,
changes to the BCs and to Re were made together, which
conflated Re effects with those arising from changes in the
large-scale structure of the flow.
Our experiment was based on a tradition established by

early pioneers of using wind tunnels with grids in them as
instruments to discover empirically how turbulence decays
[31–33]. Grids placed at one end of the tunnel stir up the
flow as it passes through them, so that grid turbulence can
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be thought of as the canonical wake flow. Grids with
different geometries produce turbulence with different
structure, and recent work has focused on the turbulence
downstream of grids with novel geometries [5,17,34,35].
We used a single classical grid to isolate the effects of Re
from those of the geometry, and to compare our results with
those from 80 years of turbulence research in wind tunnels.
We performed the experiments in the Variable Density

Turbulence Tunnel (VDTT) [30]. The VDTT circulated
both air and pressurized sulfur-hexafluoride. The Reynolds
number was adjusted by changing the pressure of the gas,
which changes its kinematic viscosity. Turbulence was
produced at the upstream end of the 8.8 m long upper test
section by a classical grid, that is, by a biplanar grid of
crossed bars with square cross section. The mesh spacing
M of the grid was 0.18 m, and the projected area of the
grid was 40% of the cross section of the tunnel. A linear
traverse positioned probes at 50 logarithmically spaced
distances x between 1.5 and 8.3 m downstream of the
grid. A Galilean transformation converts the distances
from the grid into the time over which the turbulence
decayed, so that t ¼ x=U. Here U is the mean speed of the
flow down the tunnel, which was about 4.2 m=s for most
experiments.
We used hot-wire probes to obtain long traces of the

component of the velocity aligned with the mean flow. At
each of 50 distances from the grid we acquired 5 min of
data. The experiment was repeated at 36 Reynolds numbers
andwith three probes, for a total of about108 integral lengths
of data. We used classical hot wires produced by Dantec
Dynamics from both 1.25mm lengths of 5 μmwire, dubbed
the P11 probe, and from 450 μm lengths of 2.5 μmdiameter
wire, dubbed the Mini probe, as well as the new nano-scale
thermal anemometry probe (NSTAP) developed at Princeton
that is just 60 μm long [36,37]. The probes were approx-
imately at the centerline of the tunnel, with the P11 probe
downstream of a grid bar, the Mini probe behind the edge
of a grid bar, and the NSTAP probe between grid bars. The
small differences between the results given by different
probes do not affect the conclusions of this Letter, and will
be the subject of a future detailed report.
Figure 1(a) shows for several Reynolds numbers the

normalized turbulent kinetic energy as a function of the time
since the flow passed through the grid. The variance of the
velocity, u2, is proportional to the total kinetic energy in
the turbulent fluctuations, and we refer in this Letter to u2 as
the kinetic energy itself. This is because the total mass of the
fluid was fixed, because grid turbulence is nearly isotropic,
and because the residual anisotropy decays much more
slowly than the energy [6,15,17,23,38]. The solid curve, the
master curve, is the mean of 99 decay curves accumulated
by all three probes at all Reynolds numbers. The decay
curves are remarkably similar to each other, even though
their Reynolds numbers span more than 2 orders of
magnitude.

We see in Fig. 1(a) that the data follow straight lines,
which is to say that they obey power laws of time

u2

U2
¼ C

�
ðt − t0Þ

U
M

�
n
; ð1Þ

where n quantifies the decay rate that is the subject of
this Letter. The time origin t0 for the power law, called
the virtual origin, is not directly measurable and needs
to be determined by some means. One way to do this is
by a three-parameter fit of the data to Eq. (1) using a
nonlinear least-squares algorithm [39]. However, the
uncertainties in t0 and n are coupled, leading to unre-
liable estimates of these parameters [3–6]. We describe
two ways to avoid this difficulty below, though the
conclusions of the Letter are not sensitive to the method
of analysis.
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FIG. 1. (a) The decay of the turbulent kinetic energy u2 for
seven representative Reynolds numbers as a function of time. The
linear relationship between the data on the double-logarithmic
scales of the figure indicates a power law dependence on time.
The values of Re × 10−3 for each set of data were 26, 54, 140,
410, 820, 1700, 3200, and 4800 from bottom to top. Each set of
data is shifted upward to separate it from the lowest curve, which
is unshifted. The lowest curve, the master curve, is the mean of 99
sets of data acquired at different Reynolds numbers. We nor-
malized the kinetic energy by that in the mean flow, U2, and time
by M=U. Time was offset by t0, the virtual origin. (b) We found
the virtual origin by fitting each decay curve to a power law as
described in the text. Over the full range of Reynolds numbers,
the virtual origin fluctuated with a standard deviation of less than
10% of its mean value of t0U=M ¼ 3.66.
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Figure 1(b) shows that the virtual origin, to a first
approximation, was Re independent. Its value is probably
connected to the development of the wakes behind the
bars that compose the grid; in previous experiments
different grid geometries produced different virtual
origins [15,17,40]. The wakes behind square bars are
nearly Re independent in the Re regime of our experi-
ments, and do not show the drag crisis characteristic of
circular cylinders [41]. It therefore seems reasonable to
assign a fixed value to the virtual origin.
With the virtual origin fixed to its mean value

t0U=M ¼ 3.66, we could measure the decay exponents
more precisely with a two- (rather than a three-) parameter
fit of the data to Eq. (1). Here, C and n were free
parameters, and we use the power law as a tool to uncover
the Re evolution of the decay process.
Figure 2 shows our measurements of the decay expo-

nents and compares them to those in the literature. Our data
neither approach n ¼ −1 nor trend toward a slower decay
with increasing Re, despite the wide range of high Re
achieved in the VDTT. Combining all our data, we obtain a
mean decay exponent of n ¼ −1.18� 0.02, close to
Saffman’s prediction of −1.2 [10].
Our second method of analysis emphasizes the Re

variation of the decay rate, rather than its specific form.
We make the ansatz that the kinetic energy decay at one
Reynolds number Eiðt;ReiÞ is a power law function of
the decay at another Reynolds number Ejðt;RejÞ, so that
Ej ∼ EΔn

i , and Δn is a relative decay exponent. Such a
relationship does not strictly require power-law evolution of
the energies, Ei or Ej [58]. If, however, such a power-law
decay does hold, as in our experiment, then Δn ¼ nj=ni,

where ni and nj are the decay exponents at the twoReynolds
numbers. Note that the variation in the virtual origin must
be small relative to its mean, as it was in our experiment.
In practice, we took Ei to be the master curve shown in
Fig. 1(a) and Ej to be the decay of u2 at the various Re, and
we extracted values of Δn by fitting power laws to graphs
of Ej against Ei. The advantage was not only that the
ambiguity of finding the virtual origin was eliminated, but
the requirement of power-law decay was relaxed.
The inset of Fig. 2 presents the relative scaling exponents

derived by the above procedure. Here, a trend toward a
slower decay would appear as a tendency of the data toward
lower values with increasing Re. Again, the data show no
such trend and scatter around 1.0, which means that the
dominant behavior is for the decay not to change with
increasing Re.
Different conclusions may be drawn from the previous

data gathered in Fig. 2. An approach to an n ¼ −1 decay
might be seen in the green diamonds [14,40], while the
blue squares may be consistent with no change [48]. In
computer simulations [22,59,60], the decay slowed down
slightly with increasing Re, but with similar reach in Re and
scatter in the exponents as in previous experiments. All in
all, this scatter is significant, and may be attributable to
variations in initial and boundary conditions between
experiments, that is, to the geometry of the grids used or
to other variations in the experimental design. The results
from some experiments are not shown either because the
form of the decay was not a power law or because the
exponents fell out of the range of the plot. Collectively,
the previous data leave open the question of how the decay
rate behaves in the limit of large Re.
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FIG. 2 (color online). The exponents n in Eq. (1) of power-law fits to the data quantify the energy decay rate. The line is a fit to
our data (×, �, þ), for which the mean decay rate was n ¼ −1.18 with a standard deviation of 0.02. The 95% confidence interval
for each value of n (�0.9%) is given approximately by the size of the symbols. Additional data drawn from the literature appear as
follows. Stars: brown [23], blue [33], gray [42]. Diamonds: red [43], blue [44], black [45], green [40], yellow [46]. Squares: black
[47], blue [48], brown [15], green [49], red [50], yellow [51]. Circles: black [3], red [52], blue [53], green [54], yellow [55].
Triangles: pointing down [56], black pointing left [57], red [38], blue [34], brown [17]. Closed symbols mark experiments that
employed classical grids, as ours did, whereas open symbols mark those that employed modified grids such as fractal grids.
Symbols with thin lines mark active-grid experiments. In some of these experiments, modifications to the grids were made
deliberately to elicit changes in the decay [15,17]. The inset shows on a linear scale of Re the relative decay exponents as described
in the text. Our data reveal that the rate of decay is invariant with respect to the Reynolds number for Re ≫ 104.
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Because the Reynolds number seemed not to govern the
decay rate in our experiment, we sought an explanation of
the decay in terms of the large-scale structure of the flow.
One way to derive predictions is to consider the evolution
equation for the kinetic energy in freely decaying turbu-
lence: ð3=2Þdu2=dt ¼ −ϵ. In the classical description, the
dissipation rate ϵ is independent of Re so that ϵ ¼ Cϵu3=L,
and ð3=2Þdu2=dt ¼ −Cϵu3=L. The constant Cϵ is of order
1 in most flows [61] and it was also in our experiment,
varying over time by about 4%.
In order to integrate the energy equation, some relation-

ship between the energy u2 and the correlation length L
must be derived. Typically, this relationship is a power law
L ∼ ðu2Þm with m ¼ −1=2, −1=3, and −1=5, for each of
the self-similar, Saffman, and Kolmogorov theories, respec-
tively [2,10,18]. Yet other exponents can be supported by
different arguments [11,12]. Integration of the energy
equation then yields predictions for the decay law
u2 ∼ tn, with n ¼ −1, −6=5 and −10=7, for the three
theories, respectively, and n ¼ 2=ð2m − 1Þ generally [6].
Fortunately, it is possible to look directly for a relationship
between u2 and L, without the ambiguity of determining
a virtual origin, since the virtual origin must be a property
of the flow and so must be the same for all of its statistics.
Figure 3 shows the correlation length L calculated from

the scale r at which the velocity correlation function
dropped below 1=e. The velocity correlation function
was fðrÞ ¼ huðxÞuðxþ rÞix=u2, which could be calculated
from our time series of velocity in the usual way through
Taylor’s hypothesis [62]. Gray symbols mark our data,
whereas the solid lines denote the various theoretical
predictions. Neither Kolmogorov’s nor the self-similar
decay agrees with our data, whereas Saffman’s prediction
is consistent with our data for large u2=U2.
Where the data are approximately straight in Fig. 3, a

power-law fit yields m ¼ −0.35 so that the theory predicts
n ¼ 2=ð2m − 1Þ ¼ −1.18, which is precisely what we
measured directly from the decay of kinetic energy. We
attribute the deviations from Saffman’s prediction at large
times to confinement of the flow by the walls of the
tunnel [4,9].
Saffman’s theory follows the lines of Kolmogorov’s but

is based on a different invariant, for which we now give a
brief physical interpretation. We first picture turbulence as a
sea of vortices that each carry both linear and angular
impulses [63]. The vortices interact as the turbulence
evolves, and while their kinetic energies decay, their linear
and angular impulses are conserved. The conservation of
their linear impulses is embodied in Saffman’s invariant
[64,65]. This invariant yields the relationship between u2

and L mentioned above, and so to the −6=5th decay law
[10]. In the case that the linear impulses of the vortices are
initially small compared with their angular impulses, the
character of the decay is dominated by the conservation of
the latter, which is embodied in Loitsyanskii’s invariant

[66] and Kolmogorov’s faster −10=7th decay law [2]. Since
both invariants are insensitive to the small-scale structure of
the flow, their respective decay laws are Re independent.
One finds that turbulence is more durable when its
constituent vortices carry significant linear impulse in
addition to their angular impulse.
In summary, we observed the decay rate of turbulence to

be Reynolds number independent, and the decay to proceed
in away consistentwith Saffman’s predictions [10]. The data
do not agree with the predictions of Kolmogorov, Dryden,
George, Speziale, Bernard, and others [2,14,18,21]. Initial
or boundary conditions different from ours, established for
instance by active or fractal grids [34,46], may produce
different decay rates and even different Re dependencies.
Our data, however, indicate that the self-similar decay is
probably not the generic high-Re decay. We attribute the
residual Re dependencies in our data to minor Re variations
in the flow around the grid, and not to an effect of Re on
the physics of the ensuing decay. In closing, we note that
a deeper understanding of the decay mechanisms may be
acquired by looking at different systems. Quantum turbu-
lence, for example, whose small-scale physics are com-
pletely different, may have the same large-scale structure as
classical turbulence and may decay in the same way [9,67].

The VDTT would not have run without A. Renner,
A. Kopp, A. Kubitzek, H. Nobach, U. Schminke, and the
machinists at the MPI-DS who helped to build and maintain
it. The NSTAPs were designed, built and graciously
provided by M. Vallikivi, M. Hultmark, and A. J. Smits
at Princeton. We are grateful to F. Köhler and L. Hillmann
for help acquiring the data and to G. Ahlers, G. Schewe,
K. R. Sreenivasan, and Z. Warhaft for discussions.
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FIG. 3. The correlation lengths L were approximately a power
law of the kinetic energy u2 during the decay. Time proceeds
from right to left in the graph, as indicated by the arrow. Here
we combined all data without discrimination since there was no
trend with respect to Re. To produce the smooth curve, we took
the median values of L=M and u2=U2 data falling within
logarithmically spaced bins in u2=U2. The relationships posited
by well-known theories are indicated by straight lines. Our data
are consistent with Saffman’s theory, with slope −1=3.
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