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An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency
lies within a certain interval—known as the synchronization range—around the oscillator’s natural
frequency. Under ordinary conditions, the width of the synchronization range decreases when the
oscillation amplitude grows, which constrains synchronized motion of micro- and nanomechanical
resonators to narrow frequency and amplitude bounds. Here, we show that nonlinearity in the oscillator can
be exploited to manifest a regime where the synchronization range increases with increasing oscillation
amplitude. Experimental data are provided for self-sustained micromechanical oscillators operating in this
regime, and analytical results show that nonlinearities are the key determinants of this effect. Our results
provide a new strategy to enhance the synchronization of micromechanical oscillators by capitalizing on
their intrinsic nonlinear dynamics.
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Electronic components designed for time keeping and
event synchronization use frequency references that, tradi-
tionally, are provided by vibrating quartz crystals. Device
miniaturization, however, makes it necessary to envision the
replacement of quartz crystals with simpler, fast-responding,
low power-consuming elements that would be readily
integrable to electronic circuits during fabrication.
Because of their inherent compatibility with semiconductor
technology, micromechanical oscillators are an attractive
option fulfilling such requirements [1–3]. Operating at the
microscale, the dynamics of these vibrating structures is
often nonlinear [4,5], with large oscillation amplitudes
exciting higher-order harmonics in the oscillatory motion.
It is therefore of critical importance for functional design to
characterize the effect of such nonlinearities, in particular,
on the oscillator’s capability to synchronize with external
signals. In this Letter, we show that, under suitable con-
ditions, nonlinearities can, in fact, improve the synchroniza-
tion properties of micromechanical oscillators.
Synchronized motion of an autonomous oscillator, with

the same frequency as an externally applied harmonic
perturbation, is arguably the most basic form of coherent
response of a physical system to an external action.
Generally, synchronization is possible when the frequency
of the external perturbation Ωs lies close enough to the
oscillator’s frequency Ω0, such that jΩs −Ω0j < ΔΩ where
2ΔΩ is the synchronization range. Intuitively, it is observed
that the synchronization range increases as the intensity
of the harmonic perturbation is increased [6]; i.e., the larger
the interaction with the external perturbation, the further
the frequency can be shifted. It is also usually observed
that the width of the synchronization range decreases with

increasing oscillator amplitude; i.e., as the self-sustained
drive force of the primary oscillator is increased, the ability
to change the frequency of operation through synchroniza-
tion to an external harmonic perturbation decreases. Here,
we show that, contrary to an oscillator operating in the
linear regime, for a self-sustained mechanical oscillator
driven into the nonlinear regime, synchronization by an
external force is enhanced as the amplitude of its self-
sustained oscillations increases. We demonstrate this
counterintuitive effect experimentally, through the use of
an electrically driven micromechanical oscillator in a
closed-loop configuration and an external oscillator with
a tunable frequency. A theoretical model reveals that the
enhancement of synchronizability is a direct consequence
of nonlinearities.
A schematic of the circuit used to drive the micro-

mechanical oscillator is shown in Fig. 1(a), where a closed
feedback circuit compensates for intrinsic damping to
maintain self-sustained oscillations [7]. The micromechan-
ical oscillator used for these measurements is a silicon
structure composed of three interconnected parallel beams,
500 μm long, clamped at their two ends [8]; as we will
show below, this resonator can be driven deep into the
nonlinear regime. In its principal oscillation mode, trans-
verse displacement is detected capacitively by means of a
comb-drive electrode. After amplification, the resulting
signal is conditioned by shifting its phase by a prescribed
amount ϕ0 and fixing its amplitude V0. The conditioned
signal is then reinjected through another comb-drive
electrode as a driving capacitive force that is time varying
and proportional to VdcVðtÞ [where Vdc ≈ 5 V ≫ VðtÞ];
therefore, applied forces FðtÞ are proportional to the
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applied drive voltages VðtÞ. In the absence of any other
force, this closed loop sustains the beam’s vibration at an
amplitude A0 and a frequency Ω0 determined by its
mechanical properties, the phase shift ϕ0, and the voltage
V0. The amplitude grows with V0 and, as in other
resonating mechanical systems, attains a maximum when
the driving force is in phase with the oscillation velocity.
This resonance condition is achieved in the phase shifter by
advancing the oscillating signal by ϕ0 ¼ π=2. Because of
the hardening nonlinearity in the dynamics of the oscillator
(see below), the frequency of self-sustained oscillations Ω0

increases as V0 increases. External perturbation—aimed to
entrain the oscillator into synchronized motion—consists
of a voltage signal of amplitude Vs and frequency Ωs,
which is added to the self-sustaining signal. The oscillation
frequency of the micromechanical oscillator is measured
on the conditioned signal at the exit of its amplitude control
[see Fig. 1(a)].
The motion of the principal oscillation mode is well

described by Newton’s equation for a normal coordinate
xðtÞ (representing displacement from equilibrium) with a
cubic nonlinear term, namely, Duffing’s equation [10]

mẍþ γ _xþ kxþ k3x3 ¼ F0 cosðϕþ ϕ0Þ þ Fs cosΩst;

ð1Þ
where m, γ, k, k3, F0, and Fs are the effective mass,
damping coefficient, elastic constant, cubic-force coeffi-
cient, self-sustaining force, and external perturbation,
respectively. The external perturbation used for synchro-
nization enters the equation of motion as an external
forcing term. Normalizing by the spring constant k and
choosing time units such that the natural frequency of the
principal mode equals unity (t

ffiffiffiffiffiffiffiffiffi
k=m

p
→ t), the equation of

motion reads

ẍþQ−1 _xþ xþ βx3 ¼ f0 cosðϕþ ϕ0Þ þ fs cosΩ0
st; ð2Þ

where Q ¼ ffiffiffiffiffiffiffi
km

p
=γ is the quality factor, β ¼ k3=k, f0 ¼

F0=k, fs ¼ Fs=k, and Ω0
s ¼ Ωs=

ffiffiffiffiffiffiffiffiffi
k=m

p
. The cubic-term

coefficient β is positive (negative) for hardening (softening)
nonlinearities. The amplitude f0 and (advanced) phase shift
ϕ0 of the self-sustaining force determine the conditioning
of the feedback signal. We focus on the case ϕ0 ¼ π=2,
where the effect of the self-sustaining force is maximal.
The angle ϕðtÞ is the instantaneous oscillation phase of
the coordinate xðtÞ. The synchronization force fs is applied
with a tunable frequency Ω0

s. Analytical and numerical
methods to treat Eq. (2) when β ¼ 0 have been discussed
elsewhere [11]. When β ≠ 0, the cubic term is handled
using the standard treatment of weak nonlinearities [6], by
neglecting higher-harmonic contributions. In the measure-
ment, the force amplitudes f0 and fs are proportional to the
voltages V0 and Vs, respectively.
With no applied synchronization force (fs ¼ 0), we take

xðtÞ ¼ A0 cosϕ ¼ A0 cosΩ0
0t and find that the system

attains oscillations whose frequency Ω0
0 and amplitude

A0 (see the Supplemental Material [12]) can be given
explicit expressions

Ω0
0 ¼

1ffiffiffi
2

p ½1þ ð1þ 3βQ2f20Þ1=2�1=2;

A0 ¼ Qf0=Ω0
0: ð3Þ

As seen in Fig. 1(b), our resonator, which is characterized
by Q≳ 20 000 [9] at low amplitude (inset), is well
described by Eq. (3) for driving voltages V0 ≲ 100 mV.
Noting that f0 ∝ V0, we fold the oscillator’s mechanical
parameters into a parameter α by defining αV0 ¼
jβj1=2Qf0; the fit for V0 ≤ 100 mV in Fig. 1(b) reveals α ¼
3.1� 0.1 V−1 and the natural frequency

ffiffiffiffiffiffiffiffiffi
k=m

p ¼ 2π×
67.22 kHz. Note that the self-sustained frequency is only
significantly different from the natural frequency for

FIG. 1 (color online). Nonlinear MEMS device. (a) Schematic
of the experimental setup. The closed-loop circuit, which
amplifies and conditions the displacement signal read from the
oscillator, maintains the system in self-sustained oscillation.
An external synchronization signal is also fed to the oscillator.
The scanning electron microscope image shows the clamped-
clamped oscillator. (b) Measured frequency of the oscillator
versus applied self-sustained drive voltage V0 and no synchro-
nization drive (Vs ¼ 0); blue curve shows the fit to Eq. (3) for
V0 ≤ 100 mV. Inset shows a least-squares Lorentzian fit to the
amplitude squared of a frequency sweep under weak excitation
(V ¼ 110 μV), revealing Q ≳ 20 000 [9].
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jβjf20 ≳Q−2; this occurs deep in the nonlinear regime when
the magnitude of the nonlinear term (∼jβjA3

0) becomes
comparable to or larger than the linear term (∼A0).
Under the action of the external synchronization pertur-

bation fs ≠ 0, we find that synchronized solutions exist
when Ω0

s lies within an interval Ω0
0 � ΔΩ0. We can define

this interval as a function of the ratio between the
synchronization and self-sustaining force p ¼ fs=f0
such that ΔΩ0 ¼ pδΩ0

c. Taking p ¼ fs=f0 ≪ 1, Q ≫ 1,
and inserting into Eq. (2), this interval can be shown (see
the Supplemental Material [12]) to take the form

ΔΩ0 ¼ pδΩ0
c ¼

p
2Q

��
3QβA2

0

2Ω0
0

�
2

þ 1

�
1=2

: ð4Þ

Note that ΔΩ0 is not directly dependent on the sign of the
nonlinear coefficient β (it is weakly dependent throughΩ0

0).
Through Eq. (4), we can see that, in the case of a linear

oscillator (β ¼ 0), the synchronization range 2ΔΩ0 ¼ p=Q
is simply proportional to the linewidth of the resonant
response (Q−1) and the ratio of the synchronization force to
the self-sustained force (p). This dependence is consistent
with a competition between forces: a stronger synchroni-
zation force increases the synchronization range, while a
stronger self-sustaining force decreases the synchronization
range. However, in the case of a nonlinear oscillator
(β ≠ 0), we see that this range can grow once the first
term in the brackets in Eq. (4) becomes comparable to 1;
using Eq. (3) and noting thatΩ0

0 ≈ 1, we see that this occurs
for jβjf20 ≳Q−3. This corresponds to the regime where the
nonlinear term (∼jβjA3

0) becomes comparable to or larger
than the dissipative force (∼A0=Q); for large Q, this is
achieved for considerably lower amplitudes (and forces)
than needed to reach the strongly nonlinear regime
described above.
We explore the amplitude dependence of the synchro-

nization range of our nonlinear oscillator in Fig. 2, where in
Fig. 2(a) we plot the measured oscillation frequency versus
the applied synchronization frequency Ωs for various
applied self-sustained and synchronization forces, where
we hold the ratio of the two forces constant for simplicity
(p ¼ fs=f0 ¼ Vs=V0 ¼ 0.05 and ϕ0 ≲ π=2). For each pair
(V0, Vs), we sweepΩs both upwards (blue) and downwards
(red); note that the natural frequency Ω0 of the oscillator
shifts as shown in Fig. 1(b) as a function of V0. Along the
upward sweep, the oscillator synchronizes with the external
forcing when Ωs reaches the vicinity of Ω0. Above that
point, the oscillation frequency is identical to Ωs up to about
1 part in 105 (data on the graph’s diagonal). Further increase
of Ωs, however, leads to sudden desynchronization at
Ω0 þ ΔΩ. Along the downward sweep, synchronization
persists until Ωs reaches Ω0 − ΔΩ. In both directions, the
sharp desynchronization transition occurs within an interval
of < 1 Hz, the size of incremental frequency change. When
synchronized, fluctuations in the oscillation frequency are

reduced because of the low noise level in the external
oscillator, in this case, a signal generator [13]. It is evident in
these traces that the synchronization range is increasing with
increasing force despite the fact that the ratio between the
forces p is fixed.
In Fig. 2(b), we plot the width of the observed synchro-

nization range (2ΔΩ) for our device as a function of the
self-sustained drive voltage V0 for p ¼ 0.05 (Vs ¼ pV0).
Our measured synchronization range increases with drive
voltage and is almost 4 orders of magnitude larger than
expected for a linear oscillator (β ¼ 0, dotted green line).
In order to understand the correlation with theory, we also
plot the theoretical prediction of the synchronization range

FIG. 2 (color online). Synchronization behavior. (a) Measured
oscillation frequency versus synchronization frequency (Ωs=2π)
for the oscillator, measured for p ¼ 0.05 and three values of the
applied voltages. The corresponding pairs (V0, Vs), measured in
mV, are indicated by labels. Data over the graph’s diagonal
correspond to synchronized oscillations. The arrows stand for the
direction in which the synchronization frequency was changed
during each run of the experiment. The (20,1) trace is shown in
detail in the inset. (b) Measured synchronization range as a
function of V0 (p ¼ 0.05) for experimental data sets as shown in
(a); uncertainty and repeatability in the measured synchronization
ranges are smaller than the size of the data points. Red curve
shows the predicted behavior from Eq. (4), where we have taken
Q ¼ 20 000. The green dotted line shows the prediction for a
linear oscillator (β ¼ 0).
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(red line) from Eq. (4) by employing the measured
parameters for our device; we have used the substitution
for A0 [Eq. (3)], the measured values for

ffiffiffiffiffiffiffiffiffi
k=m

p
andQ, and

the fit value of α ¼ 3.1 V−1 found from Fig. 1(b) (where we
have again used the substitution αV0 ¼ jβj1=2Qf0). There
are no adjustable parameters in this curve. As seen in the
figure, the dependence of the measured synchronization
range on the drive voltages agrees qualitatively with the
predicted values; indeed, the measured synchronization
range is significantly larger than the prediction, indicating
that the Duffing equation does not provide a complete
description of the closed loop and synchronized response of
the nonlinear oscillator for large self-sustaining amplitudes.
In addition, in this high amplitude and highly nonlinear
regime, several factors may contribute to this discrepancy
including amplitude-dependent device parameters such as
α and Q, higher-order nonlinearities and harmonics in both
the device dynamics and the drive and signal transduction
(through the comb electrodes), and our use of a finite
synchronization force fS (through p), which may affect the
synchronization range more dramatically than we account
for in our perturbative treatment. This breakdown becomes
clearer for V0 > 100 mV, where the measured synchroni-
zation range begins to saturate and the behavior deviates
qualitatively from the prediction; this is consistent with
the deviation of the measured device frequency shown in
Fig. 1(b) from Eq. (3) in this voltage range. Drive voltages
below V0 ∼ 20 mV are challenging to measure for our
highly nonlinear oscillator and with our experimental setup
because self-sustained oscillations are not stable in this
range; however, we believe the synchronization range will
decrease with reduced drive voltages as suggested by the
theory until it reaches the well-understood linear regime.
In order to get a clearer picture of this surprising

behavior, in Fig. 3 we plot the synchronization range
2ΔΩ0 as a function of both jβj1=2f0 and Q as predicted
by Eqs. (3) and (4). Three regions spanning orders of
magnitude in synchronization range are clearly observable
and can be understood by the comparative strength of the
nonlinear term to the other terms in Duffing’s equation
[Eqs. (1) and (2)]. On the left of the plot, when jβjf20 ≲Q−3,
the nonlinear term (βA3

0) is smaller than both the dissipative
term (A0=Q) and the elastic term (A0) and the synchroni-
zation behavior is characterized by a linear response. When
Q−3 ≲ jβjf20 ≲Q−2, the nonlinear term dominates the
dissipative term but is still small compared to the elastic
term; this regime shows rapid increase of the synchroniza-
tion range with increasing nonlinearity or self-sustained
driving force as demonstrated by the measurements of our
oscillator. Once jβjf20 ≳Q−2, indicating the nonlinear force
dominates even the elastic force, the oscillator is deep in
the nonlinear regime and the rate of increase of the
synchronization range is slowed by the increase in the
self-sustained frequency due to the increase (for β > 0) in
Ω0 as indicated by Eq. (3).

Our results show that the Duffing model gives a good
description of the micromechanical oscillator for V0≲
100 mV. Both the nonlinear self-sustained frequency and
the increase in the synchronization range with increasing
self-sustained force are well predicted by the model. We
can estimate the nonlinearity in our device by quantifying
the strength of the applied forces; by using Vdc ¼ 5 V, the
physical parameters of our structure, and the forces
expected in a parallel-plate comb drive, we estimate that
f0=V0 ¼ 2.6 × 10−10 m=V. Using this, we can estimate its
nonlinear coefficient: β ¼ 1.5 × 1019 V2=m2 × α2=Q2. For
our measured value of Q≳ 20 000 and fit for α ¼ 3.1 V−1,
we arrive at β ≲ 3.3 × 1011 m−2. Because of its ability to
access large nonlinearities, the oscillator under study was
well suited to probe this surprising regime of nonlinear
synchronization. On the other hand, we have found that
driving the oscillator with higher voltages causes the
response to deviate from the behavior predicted by the
Duffing equation. Large-amplitude oscillations appear to
be dominated by higher-order nonlinear effects.
The regime of synchronization enhancement disclosed in

this Letter, which may also be related to the sudden increase
of the synchronization range mentioned in a recent pub-
lication for two coupled micro-oscillators [14,15], is a
beneficial effect of nonlinearity on the coherent response of
an oscillator to an external action. It may find advantageous
applications in devices where many oscillators must be
synchronized by a master signal, such as in array of
resonators for optical processing and communications
systems [16,17], by widening the domain where synchron-
ized motion occurs. Extending the same effect to the mutual
entrainment of two or more oscillators could assist in the
development of a solution to some of the problems
associated with the use of micromechanical oscillators in

FIG. 3 (color online). Contour plot of the synchronization range
ΔΩ0 predicted by Eq. (4) as a function of jβj1=2f0 and Q for
p ¼ 0.05. The various regions are labeled and separated by
dotted lines.
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miniaturized devices. First, the undesired dependence of
the oscillation frequency with the amplitude—namely, the
amplitude-frequency effect [4,5], due to the nonlinear
nature of the individual dynamics—might be compensated,
at least partially, by bidirectionally coupling oscillators
with hardening and softening nonlinearities. Second, the
effect of thermal noise [7,18] may be reduced by producing
a more robust signal from the synchronization of several
oscillators with similar self-sustained frequencies.
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