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The coexistence of coherently and incoherently oscillating parts in a system of identical oscillators with
symmetrical coupling, i.e., a chimera state, is even observable with uniform global coupling. We address
the question of the prerequisites for these states to occur in globally coupled systems. By analyzing two
different types of chimera states found for nonlinear global coupling, we show that a clustering mechanism
to split the ensemble into two groups is needed as a first step. In fact, the chimera states inherit properties
from the cluster states in which they originate. Remarkably, they can exist in parameter space between
cluster and chaotic states, as well as between cluster and synchronized states.

DOI: 10.1103/PhysRevLett.114.034101 PACS numbers: 05.45.-a

The story of chimeras in nonlinear dynamics goes back
to the year 2002, when Kuramoto and Battogtokh [1]
discovered that in a system of identical oscillators with
symmetrical coupling, coherently oscillating regions can
coexist with incoherent ones. In fact, this was not the first
observation of such a coexistence [2–4], but Kuramoto and
Battogtokh were the first pointing out its importance. This
state was named a chimera state by Abrams and Strogatz
[5], referring to the chimera in Greek mythology. Many
theoretical studies followed, see, for example, Refs. [5–12],
and 10 years after their discovery, chimera states could be
observed in experiments also [13–18]. For a recent review,
see Ref. [19]. Yet, concerning the prerequisites of their
existence and the mechanisms of their emergence only very
little is known. Bifurcation analysis revealed that they can
emerge via a saddle-node bifurcation [5,7,9,20], and they
were found in maps with coupling-induced bistability [10].
First analytical studies aiming to analyze the stability and to
characterize the emergence and dynamics of chimera states
in nonlocally coupled systems in a general way are
presented in Refs. [20,21]. In addition, it has long been
thought that a nonlocal coupling scheme is indispensable
for their formation. Under nonlocal coupling, it is reason-
able that regions of different dynamics can coexist, since
the coupling decreases with the distance and the influence
of one region on the other over some interfacial region
might not be too strong. However, it could be shown that
they also exist in systems with uniform global coupling
[11,12,18,22], where each oscillator is influenced equally
strongly by all the other oscillators. Such a coupling is
realized experimentally, e.g., by an external resistance in
series with some voltage-controlled device, such as a gas-
discharge tube [23] or an electrochemical cell [24] or due to
rapid mixing in the gas phase in surface reactions [25,26].
Generally, it arises whenever a global quantity is controlled
and can be linear, as well as nonlinear. For globally coupled

phase oscillators, chimera states were found in a system
with time delay, where bistability emerged in a self-
consistent way, as well as with individual bistable oscil-
lators [11].
In this Letter, we argue that a clustering mechanism

observed typically in globally coupled systems is a suffi-
cient feature, rendering chimera states possible, as it splits
the oscillators into several groups and yields at least
bistability. Then, one of the two groups can desynchronize,
while the other group stays coherent if the response on the
coupling is effectively different in the two groups. In the
present study, we demonstrate that this situation can arise
via nonlinear amplitude effects. Moreover, we show that
different cluster states lead to different chimera states and
that the chimera states inherit properties from the cluster
states in which they originate.
Our system is composed of N Stuart-Landau oscillators,

each of the form

d
dt
Wk ¼ Wk − ð1þ ic2ÞjWkj2Wk; ð1Þ

k ¼ 1; 2;…; N, constituting generic limit-cycle oscillators
near a Hopf bifurcation [27]. We couple them via a
nonlinear global coupling:

d
dt
Wk ¼ Wk − ð1þ ic2ÞjWkj2Wk

− ð1þ iνÞhWi þ ð1þ ic2ÞhjWj2Wi: ð2Þ

Here, h� � �i describes the arithmetic mean of the oscillator
population, i.e., hWi ¼ P

N
k¼1 Wk=N. Taking the average of

the whole equation yields for the dynamics of the mean
value
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d
dt
hWi ¼ −iνhWi ⇒ hWi ¼ ηe−iνt: ð3Þ

This constitutes conserved harmonic oscillations of the
ensemble average. Note that the above model, Eq. (2),
describes the essential dynamics of the oxide-layer thick-
ness during the photoelectrodissolution of n-type silicon
[28–30]. The linear global coupling is a result of an external
resistance in series with the silicon electrode, while we
believe that the nonlinear global coupling is connected to a
limitation of the total amount of charge carriers. For more
details, see Refs. [30,31]. This experimental system exhib-
its also chimera states [18,31]. To capture its dynamics, it is
important to reproduce the harmonic mean-field oscillation.
The dynamics of the oscillator population, Eq. (2), are

determined by three parameters, namely c2, ν, and η, where
η is controlled via initial conditions and acts effectively as
the coupling strength. We numerically solved Eq. (2) using
an implicit Adams method with time step dt ¼ 0.01 for
N ¼ 1000 oscillators and random initial conditions ful-
filling the conservation law in Eq. (3). The simulation
results reveal two types of clustering dynamics: amplitude
clusters as depicted in Fig. 1(a) and modulated amplitude
clusters as depicted in Fig. 1(f). In the amplitude cluster

state, the ensemble splits into two groups that oscillate with
an amplitude difference and a small, fixed phase difference.
The modulated amplitude cluster state can be described as
an overall uniform oscillation that is modulated by an
additional oscillation of the two groups around the mean
value in antiphase, giving rise to quasiperiodic motion. We
studied these cluster solutions in detail in Ref. [32], where
we could show that the amplitude clusters bifurcate off the
synchronized solution [Fig. 1(c)] via a pitchfork bifurca-
tion. The modulated amplitude clusters are created in a
secondary Hopf bifurcation, and the two types of clusters
are connected by a saddle-node of infinite period (SNIPER)
bifurcation. The cluster formation is the first symmetry-
breaking step rendering chimera states possible as it
produces first of all two different groups. Indeed, in the
vicinity of the two types of clusters, we also observe two
associated types of chimera states, as shown in Figs. 1(b)
and 1(e), respectively. The first type obviously inherited the
property that the two groups are separated by an amplitude
difference. Thus, starting from the amplitude cluster state,
the group with the smaller radius got desynchronized. The
second type of chimeras also shares properties with the
modulated amplitude clusters, but this will be discussed
below, where it becomes more apparent. Type II chimeras

FIG. 1 (color online). Evolutions in the complex plane and snapshots. Trajectories of the oscillators are shown as solid lines, whereas
the symbols describe snapshots of the system. First row: type I dynamics. (a) Amplitude clusters (η ¼ 0.9). (b) Type I chimera
(η ¼ 1.02), black lines and squares: incoherent group; cyan (gray) lines and circles: coherent group. (c) Complete synchronization
(η ¼ 1.2). Other parameters: c2 ¼ 0.58 and ν ¼ 1.49. Second row: type II dynamics. (d) Irregular dynamics (ν ¼ −0.1). (e) Type II
chimera (ν ¼ 0.02), black lines and squares: incoherent group; cyan (gray) lines and circles: coherent group. (f) Modulated amplitude
clusters (ν ¼ 0.1). Other parameters: c2 ¼ −0.6, η ¼ 0.7.
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[Fig. 1(e)] could actuallybe identifiedwith the chimera states
found during the photoelectrodissolution of n-type silicon
[18,30,31]. It bridges the gap between the cluster solution in
Fig. 1(f) and completely irregular dynamics in Fig. 1(d). In
contrast, typeIchimerasmediatebetween thecluster solution
in Fig. 1(a) and the synchronized state in Fig. 1(c). Phase
diagrams in thevicinity of the two types of chimera states can
be found in the Supplemental Material [33].
To gain a better understanding of the temporal dynamics

in the chimera states, we depict jWkj and ReWk versus time
for type I and II chimeras in Figs. 2(a) and 2(c), respec-
tively. The synchronized group is marked with cyan (gray)
color and the incoherent group is plotted in black. In the
type I chimera, there is a clear separation of the groups by
an amplitude difference. This state is in fact unstable, as we
observe heteroclinic transitions between the type I chimera
and two other cluster states on a large time scale. This will
be discussed below. In contrast, the second type of
chimeras seems to be stable, as we could not observe a
break down in the simulations up to T ¼ 1 × 106. The
incoherent oscillators in this type II chimera show a nearly
periodic spiking behavior (which is not performed by all
incoherent oscillators at the same time). This is a property
inherited from the modulated amplitude clusters [Fig. 1(f)].
The frequency of the spiking is given by the frequency of
the modulational oscillations that are a result of a secondary
Hopf bifurcation [32]. The dynamics show that the sepa-
rations into incoherent and coherent groups occur via the
clustering mechanism, for both types of chimeras.
Type I chimeras can also be found with a linear global

coupling. Daido and Nakanishi [22] and also Nakagawa

and Kuramoto [4] describe a state that seems to be such a
chimera state, but they do not identify them as such. Only
later, they have been identified as chimera states [12]. In
fact, the nonlinear global coupling we consider behaves
effectively like a linear global coupling in case of type I
dynamics. This is visualized in Fig. 2(b), where we plot the
linear part of the coupling hWi as a red dashed line and the
nonlinear part hjWj2Wi as a blue solid line. We see that
the nonlinear term is also sinusoidal, i.e., hjWj2Wi ∝ hWi,
yielding an effective overall linear behavior of the coupling.
Since this implies hjWkj2Wki ¼ hr3keiϕki ∝ hrkeiϕki, averag-
ing leads tovanishingnonlinear effects in theglobal coupling
for type I chimeras. Incontrast, in caseof type II chimeras, the
dynamics of hjWj2Wi is highly nonlinear, as shown in
Fig. 2(d). We conclude that type II dynamics might not be
observable with a solely linear global coupling.
Furthermore, we looked at time series of individual

oscillators in the incoherent groups. Examples are depicted
in Figs. 3(a) and 3(c) for type I and II chimeras, respec-
tively. As a simple test for chaoticity, next-maximum maps
for the time series are shown in Figs. 3(b) and 3(d),
respectively. Both next-maximum maps are highly non-
trivial and structurally very different. We see this as a clear
indication that the dynamics in the incoherent parts of the
two types of chimeras take place on different types of
chaotic attractors. In the case of type II chimeras, the
incoherent dynamics inherits properties from the motion on
the torus existing at close-by parameter values, while no
torus exists in the neighborhood of type I chimeras.
As already mentioned, type I chimeras are unstable, and

we observe heteroclinic connections. To visualize this, we

FIG. 2 (color online). (a),(c) Type I and II chimera states, modulus and real part versus time, respectively. The population splits into
two groups, one being synchronized (cyan, gray) and one being desynchronized (black). (b),(d) Linear average, Re hWi, (dashed lines)
and nonlinear average, Re hjWj2Wi, (solid lines) versus time for type I chimeras (b) and type II chimeras (d).
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define a measure characterizing the different dynamical
states. The natural choice of the Kuramoto order parameter
is inappropriate here, because of the strong amplitude
fluctuations and since hWi ¼ η exp ð−iνtÞ at all times.
Therefore, we use the variance σ ¼ hW2i − hWi2. An
exemplary time series of jσj for parameters of type I
chimeras is shown in Fig. 4(a).
Three qualitatively different regimes can be identified

and after an initial transient, the system randomly settles
first to one of them; in the trajectory shown, it is a 1-3
cluster state. The dynamics in this state are depicted in
Fig. 4(b), and the phase distribution at one time step is
shown in a histogram in Fig. 4(c). This state consists of one
large cluster and three small clusters of approximately the
same size. The measure jσj exhibits strong variations
around a value of approximately 0.1. Then around
t ¼ 15 000, the 1-3 cluster state breaks down and the
system moves to a new state that exhibits fluctuations of
jσj around 0.05: the type I chimera state. After approx-
imately Δt ¼ 10 000, we observe another transition to a
state with nearly constant jσj. This is the amplitude
cluster state as depicted in Fig. 1(a). Figure 4(a) suggests
that transitions between these three states follow in a
noncyclic and nonperiodic sequence. Thus, though
being reminiscent of a heteroclinic orbit, the dynamics
possesses a further peculiar, unpredictable feature.
In summary, we found numerically two types of chimera

states in the vicinity of two types of clusters. The chimera
states inherit properties from the respective cluster states.
We conclude that the clustering mechanism is a first
symmetry-breaking step sufficient for chimera states to

occur in oscillatory systems with uniform global coupling.
It differentiates the system into two groups, thereby
rendering it bistable. Oscillators in the two states respond
effectively different to the coupling due to nonlinear
amplitude effects. Note that as a consequence, this
mechanism will not give rise to chimeras in ensembles
of phase oscillators, where other mechanisms may render
their formation possible [11]. Furthermore, we demon-
strated that the chimera states can mediate between
cluster states and completely incoherent behavior as well
as between cluster states and synchrony. This leads us
to the conclusion that chimera states might appear
spontaneously in many globally coupled systems,
as a clustering mechanism and the possibility of
amplitude variations are sufficient features a system has
to exhibit.
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FIG. 3 (color online). Chaos in the chimera states. (a),(c)
Samples of time series of incoherent oscillators for type I and
II chimeras, respectively. Identified peaks are marked with
circles. (b),(d) Next-maximum maps for the peaks in (a),(c).

FIG. 4 (color online). Heteroclinic connections between type I
chimeras, 1-3 cluster states and amplitude clusters for N ¼ 100
oscillators. (a) Trajectory of jσj in time showing the transitions
between the different states. (b) Exemplary dynamics of the 1-3
cluster state in the complex plane: lines depict time evolution
and dots represent the configuration of the oscillators at one
time step. (c) Histogram of phases in the 1-3 clusters state
showing that it consists of 1 large cluster and 3 small clusters
of approximately the same size.
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