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We show in microwave measurements and computer simulations that the contribution of each
eigenchannel of the transmission matrix to the density of states (DOS) is the derivative with angular
frequency of a composite phase shift. The accuracy of the measurement of the DOS determined from
transmission eigenchannels is confirmed by the agreement with the DOS found from the decomposition of
the field into modes. The distribution of the DOS, which underlies the Thouless number, is substantially
broadened in the Anderson localization transition. We find a crossover from constant to exponential scaling
of fluctuations of the DOS normalized by its average value. These results illuminate the relationships
between scattering, stored energy, and dynamics in complex media.
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The transmission matrix (TM) is the basis of a powerful
approach to quantum and classical wave propagation that is
able to explain the statistics of conductance [1–7] and trans-
mission [8] and prescribe the degree towhich the transmitted
wave front can be manipulated [9–15]. It was introduced
byDorokhov to explain the scalingof electronic conductance
in wires. For a wire connected to perfectly conducting leads
that support N propagating channels, and similarly for a
waveguide between segments of empty waveguides, the
N × N elements of the TM, t, tba, are the field transmission
coefficients through the sample between the incident chan-
nels a and outgoing channels b. The conductance in units
of the quantum of conductance G=ðe2=hÞ is equivalent to
the classical transmittance Twhich can be expressed in terms
of the transmission eigenvalues τn of the matrix product tt†,
T ¼ P

N
n¼1 τn [1,6]. The probability distribution of these

transmission eigenvalues determines the statistics of trans-
mission [1–5,8,16].
For diffusive samples, the average of T over a random

ensemble is given by hTi≡ g ¼ ξ=L, where ξ ¼ Nl is
the localization length and l is the transport mean free path
[17]. For g > 1, transport is diffusive and the flux trans-
mitted through disordered samples in eigenchannels of
transmission varies over a wide range with a small number
of highly transmissive channels among a multitude of dark
eigenchannels [1–5]. The transmittance is dominated by
the approximately g “open” channels with transmission
eigenvalues τn > 1=e.
Recently, considerable attention has focused on the power

of theTMtomold the flowofwaves through randomsamples
[14] and to modify the energy density inside the medium
[18,19]. The possibility of sharp focusing and enhanced
transmission has been demonstrated for sound [20], elastic
waves [21], light [9,13,22], and microwave radiation [12].
These phenomena have been described in terms of the
transmission eigenvalues [9–13,21], but static transmission

parameters cannot explain the dynamics of transmission
or provide the DOS whose statistics control emission,
absorption, and wave localization and give the rate of
emission from and thermal excitation of a medium [23–33].
The crossover to wave localization reflects the changing
characterof theunderlyingmodes, fromextended tospatially
peaked. This is characterized by the Thouless number δ,
which is essentially the ratio of the typical linewidth to the
spacing of classicalmodes or quantumenergy levels [17,34].
But the full statistics of modal overlap, reflected in δ have
not been measured.
In this Letter, we show that the DOS can be determined

from measurements of spectra of the TM. The contribution
of each eigenchannel to the DOS is the derivative with
angular frequency of a composite phase of the eigenchan-
nel. Summing the contributions from all eigenchannels
provides the first direct measurement of the DOS of a
multiple scattering medium as a whole. The DOS deter-
mined from the eigenchannels is found to be in excellent
agreement with the DOS found from a decomposition of
the transmitted field into modes. The probability distribu-
tion of the DOS broadens substantially in the crossover
to Anderson localization reflecting the increasing spectral
isolation of long-lived localized modes. The eigenchannel
phase derivative, which is equal to the delay time in
transmission, increases with τn. When normalized by the
average delay time, the eigenchannel delay time versus τn
for diffusive samples of different length is found to fall on a
universal curve.
The DOS of a bounded open medium for classical waves

is the density of quasinormal modes or resonances of a
region per unit angular frequency [34],

ρðωÞ ¼ 1

π

X

n

Γn=2
ðΓn=2Þ2 þ ðω − ωmÞ2

: ð1Þ
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Here, ωn is the central frequency and Γn is the linewidth
of the nth mode. The integral over frequency of each
mode in Eq. (1) is unity. Krein, Birman, Yafaev, and
Schwinger [24–26] have shown that the DOS may be
expressed in terms of the scattering matrix S,
ρðωÞ ¼ −ið1=2πÞTrS†dS=dω, where −iS†dS=dω is the
Wigner-Smith delay-time matrix whose trace is equal to
the sum of scattering times in all 2 N channels linked to
the scattering region [27,28]. This is proportional to the
integral of the energy stored within the medium for unit
incident flux in each channel, ρðωÞ ∝ P

2N
α

R
V Iαðr;ωÞdV

[28,30]. The difficulty of carrying out measurements over
all possible scattering channels has so far precluded a
determination of the DOS based on the scattering matrix.
However, the calculations of Brandbyge and Tsukada
[29] of the local DOS of electrons based on the scattering
matrix show that the DOS can be determined from
measurements of the TM. The DOS can be obtained from
the summation of the derivative of the composite phase of
the transmission eigenchannels with angular frequency.
The phase derivative of the nth transmission eigenchannel,
ðdθn=dωÞ¼1

i(u
�
nðdun=dωÞ−v�nðdvn=dωÞ), where vn and

un are nth columns of the unitary matrices V andU, may be
obtained from the singular value decomposition of the TM,
t ¼ UΛV† [35]. Λ is a diagonal matrix with elements

ffiffiffiffiffi
τn

p
.

The DOS is then

ρðωÞ ¼ 1

π

XN

n¼1

dθn
dω

: ð2Þ

Each term in the sum is the contribution of a single
eigenchannel to the DOS, the eigenchannel density of
states (EDOS).
This relation is an extension to multichannel systems of

the equality between the DOS and the transmission delay
time in 1D systems [31]. The eigenchannel phase derivative
dθn=dω corresponds to the delay time ΔtnðωÞ of energy
for a transmitted pulse composed of a superposition of
waves in the nth eigenchannel centered at ω in the limit of
vanishing bandwidth [35].
Measurements of the TM for which the impact of

absorption is removed are carried out in a copper wave-
guide containing randomly positioned alumina spheres
[10,16,35,36]. The empty waveguide supports N ∼ 66
modes for diffusive waves and N ∼ 30 for localized waves.
Measurements are made for linearly polarized horizontal
and vertical components of the field over the front and back
surfaces of the waveguide by translating and rotating wire
antennas on a square grid. The TM is computed using
N=2 points for each polarization for a diffusive wave. For
localized waves, the measurements reported here are made
for only a single polarization. The measurement of the TM
on a grid for a single polarization is incomplete [11,13], but
we find that the statistics of the TM are well represented by
the measured TM provided that the measured size of the

TM, N0, is much greater than the value of dimensionless
conductance g in the sample [11,16]. New configurations
are obtained by briefly rotating and vibrating the sample
tube. For diffusive waves, the TM was measured for three
sample lengths, L ¼ 23, 40, and 61 cm, while for localized
waves, measurements are reported here for samples of
length L ¼ 40 cm.
Microwave spectra of τn and dθn=dω for a single random

configuration drawn from an ensemble of diffusive samples
with g ¼ 6.9 and localized samples with g ¼ 0.37 are
shown in Fig. 1. In Fig. 2 we compare the DOS determined
from the sum in Eq. (1) of contributions from all modes to
the DOS given by the sum over eigenchannels in Eq. (2).
The comparison is made for waves in the crossover to
Anderson localization for which the degree of modal
overlap is appreciable but still small enough that the full
set of mode central frequencies ωn and linewidths Γn and
so the contribution to the DOS for each mode can be
accurately determined from a decomposition of field
spectra [37]. The DOS found from the modal decompo-
sition involves the analysis of the entire field spectrum and
modes can be found from measurements of the TM as well
as from measurements of field spectra within the interior of
the sample [35], from which it is impossible to find the
transmission eigenchannels. In contrast, the analysis of the
transmission eigenchannels requires only the TM at two
slightly shifted frequencies so that the derivative of the
phase can be found. Thus the DOS determined from an
analysis of modes and channels is independent. A plot of
the spectrum of the individual modes corresponding to the
terms in Eq. (1) is shown in Fig. 2(a). Good agreement is
found in Fig. 2(b) between the sums of the contributions to
the DOS of all eigenchannels and of all modes determined
from the TM and from spectra of the field inside the
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FIG. 1 (color online). Spectra of τn (a),(c) and spectra of
(dθn=dω) (b),(d) for eigenchannels n ¼ 1,5,15,25 for diffusive
waves of sample length L ¼ 23 cm with g ¼ 6.9 (a),(b), and
n ¼ 1,2 for localized waves of length L ¼ 40 cm and g ¼ 0.37
(c),(d).
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sample. The analysis of the TM can thus be used to find the
DOS in samples with strong modal overlap for modal
analysis is not possible.
The degree of overlap of the modes of the medium is a

fundamental indicator of the nature of wave propagation.
This is encapsulated in the Thouless number, which is
essentially the average of the ratio of the spectral width
and spacing of modes [17]. A more comprehensive
representation of the nature of modal overlap in random
systems would be the probability distribution of the relative
DOS, ρðωÞ=hρðωÞi, which can be constructed from
spectra of

P
N
n¼1 dθn=dω. The probability distributions

PðPN
n¼1ðdθn=dωÞ=h

P
N
n¼1ðdθn=dωÞiÞ measured for ense-

mbles of samples with Leff=ξ ranging from 0.14 to 2 are
shown in Fig. 3(a). The effective sample length [38] is
Leff ¼ Lþ 2zb with intensity extrapolation lengths beyond
the sample reflecting internal reflection of zb ¼ 6 cm for
localized waves and 13 cm for diffusive waves [10]. The
distributions are seen to broaden with increasing sample

length L, particularly beyond the crossover to localization
at L=ξ ¼ 1 when distinct peaks begin to emerge in the
spectrum of the DOS. For Leff=ξ ¼ 2.08, the probability
distribution of the DOS, PðρÞ is seen in Fig. 3(b) to exhibit
an algebraic tail as 1=ρ4.8 in agreement with simulations
for this sample [35]. For L ≫ ξ, the tail of the time delay
distribution for transmitted waves in a random 1D sample,
which is the same as the DOS, is PðρÞ ∝ 1=ρ2 [39,40]. The
probability distribution of transmittance PðTÞ for quasi-1D
samples is found to approach the log-normal distribution
predicted for L ≫ ξ in 1D samples [41] only when the
participation number of transmission eigenchannels [12],
M≡ ðPN

n¼1 τnÞ2=
P

N
n¼1 τ

2
n is very close to unity. PðTÞ for

the sample with Leff=ξ ¼ 2.08 is a one-sided log-normal
distribution [16] and we would not expect PðρÞ to reach its
asymptotic form for L=ξ ≫ 1.
We carry out two-dimensional numerical simulations

using the recursive Green’s function method [42] to explore
the fluctuations of the DOS as well as to determine the
impact of an incomplete measurement of the TM on
estimates of the DOS. Spectra of dθn=dω for a diffusive
sample with L=ξ ¼ 0.69 and N ¼ 33 in which fluctuations
in spectra of the EDOS are still appreciable are shown in
Fig. 4(a). dθn=dω is seen to coincide with normalized
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FIG. 2 (color online). (a) Contributions of the individual
modes in Eq. (1) to the DOS. (b) Comparison of the DOS
determined from the TM (red curve) by summing spectra of
(dθn=dω) and modes found from spectra of the field at the output
(black curve) and from spectra of the field inside the sample
(gray dotted curve).
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FIG. 3 (color online). (a) Measurement of probability distribu-
tion of the DOS normalized by its average value determined
from the sum of dθn=dω for Leff=ξ ¼ 0.14 (blue squares),
Leff=ξ ¼ 0.25 (green triangles) and Leff=ξ ¼ 2.08 (black circles).
(b) Probability distribution of the DOS for Leff=ξ ¼ 2.08 in a
semilog scale. The black line is a fit of the tail as 1=ρ4.8.
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FIG. 4 (color online). (a) Spectra of dθn=dω (full curves) and
the normalized integral of the energy density InðzÞ inside the
sample (circles), for eigenchannels with τ ¼ 0.8 (blue line), τ ¼
0.5 (green line), τ ¼ 0.01 (red line) for N ¼ 33 and L=ξ ¼ 0.69.
The black curve is ρðωÞ. The red dashed curve is

P
N0
n¼1 dθn=dω

for an incomplete measurement of the TM with N0=N ¼ 0.7.
(b) Probability distribution Pðρ=hρiÞ for L=ξ ¼ 0.07 (red line),
L=ξ ¼ 0.69 (black line), and L=ξ ¼ 2.2 (blue line). The corre-
sponding dashed curves are PðPN0

n¼1 dθn=dω=h
P

N0
n¼1 dθn=dωiÞ

with N0=N ¼ 0.7. (c) Variation of the variance of the normalized
DOS, varðρ=hρiÞ, as a function of L=ξ in simulation with N ¼ 16
(black crosses) and N ¼ 33 (black stars) and in measurements
(squares). The red line is an exponential fit of the data for
localized waves, L=ξ > 1. The results are obtained from 5000
simulations of samples with the same length but different degrees
of disorder. (d) Linear plot of varðρ=hρiÞ for diffusive waves.
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spectra of the integral of the energy density over the sample
volume for a transmission eigenchannel

R
V Inðr;ωÞdV

[35], confirming that dθn=dω is the contribution of the
nth eigenchannel to the DOS, the EDOS. However, it is
difficult to excite and detect all channels and the measured
TM for diffusive waves is typically incomplete.
ðdθn=dωÞ=π is then no longer equal to the EDOS and
its sum does not give the DOS. Similarly, it is not possible
to construct a fully transmitted incident wave when the TM
is not complete [11]. We estimate that the best agreement
between measurements of hdθn=dωi and simulations of
hdθn=dωi shown in Fig. 5(b) occurs when we construct
the simulated TM using a fraction N0=N ¼ 0.7 of the
channels of the system. The best agreement between
measurements and calculations of the probability distribu-
tion of transmission eigenvalues is also obtained for
N0=N ¼ 0.7 [35].
In Fig. 4(a) slight differences between spectra of the sum

of dθn=dω for a complete TM and for a sample with
N0=N ¼ 0.7 are observed. The probability distributions
PðPN

n¼1 dθn=dωÞ shown in Fig. 4(b) are quite similar
when N0 ≫ M. Significant deviations arise, however, for
diffusive samples in which M is comparable to or larger
than N0. The number of measured channels is then
insufficient to accurately reflect the nature of transport.
In Figs. 4(b) and 4(c), we show the results of simulation

of the scaling of the variance of ρðωÞ=hρðωÞi for samples
with N ¼ 16 and N ¼ 33 together with the result obtained
from the distribution shown in Fig. 3 for Leff=ξ ¼ 2.07.

In this case N0 ≫ M. Measurements are seen to be in good
agreement with simulations. The variance for diffusive
waves, for L=ξ < 1, is flat with a value of ∼0.003 for
N ¼ 33 and ∼0.007 for N ¼ 16. Rigidity in the spectrum
of the central frequencies of electromagnetic modes
when many modes fall within the mode linewidth [43] is
likely the origin of the constant value of the variance of
ρðωÞ=hρðωÞi for each value of N. For deeply localized
waves, mode spacing typically exceeds the linewidth so
that fluctuations of the DOS increase rapidly with L=ξ
as modal linewidths fall. The variance of ρðωÞ=hρðωÞi is
seen in Fig. 4(c) to increases exponentially as e1.6L=ξ.
Thus fluctuations of the DOS provide an experimental
measure of L=ξ and of the degree of modal overlap for both
diffusive and localized waves [43].
The variation of the transmission delay time with the

transmission eigenvalue in diffusive samples is shown in
Fig. 5(a). hdθn=dωi increases with τn and sample length so
that delay times are lengthened in coherent eigenchannels
with high transmission. When normalized by the ensemble
average of the photon delay time, which is the average
of the single channel delay time between channels a and b
weighted by the transmitted intensity jtbaj2, hdφ=dωi ¼
hPab jtabj2dφab=dωi=h

P
ab jtabj2i, the measurements

collapse to a single curve [Fig. 5(b)]. This is confirmed
in simulations as shown in Fig. 5(c). The constant ratio of
the delay time hdθn=dωi averaged over eigenchannels of
fixed τn, to the average delay time together with the scaling
of hdφ=dωi as L2 for diffusive waves [44] indicates that
the EDOS for a given value of τn scales as L2, as seen in
Fig. 5(d) for τn ¼ 0.1 and 1. Though the EDOS scales as
L2, the DOS is seen in Fig. 5(d) to scale as L, as expected,
since the number of open channels with τn > 1=e is
proportional to g ¼ ξ=L [1,2], falls inversely with L.
We have shown that it is possible to measure the

dynamics and stored energy in addition to the transmission
of each transmission eigenchannel. This makes it possible
to measure the DOS as well as the transmittance for both
diffusive and localized waves. Fluctuations in the DOS can
provide a rich picture of the changing nature of transport in
the Anderson localization transition. The cumulant corre-
lation function with frequency shift of the DOS normalized
to its average may yield the statistics of the spacing of
energy levels and the probability of return of scattered
particles of the wave to a coherence volume within the
sample vs time delay [43,45]. The wave becomes localized
when the probability of return integrated over time equals
unity. Because high transmission eigenchannels are also
long-lived and highly excited, the incident wave can be
manipulated to enhance relaxation times and stored energy
within random systems for a variety of applications.

We thank Evgeni Gurevich for stimulating discussion on
the scattering matrix and Arthur Goetschy and A. Douglas
Stone for providing the simulation code to calculate the
transmission matrix through a two dimensional disordered
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