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Accurate ionization potentials of the first-row transition-metal atoms are obtained via the initiator full
configuration quantum Monte Carlo technique, performing a stochastic integration of the electronic
Schrödinger equation in exponentially large Hilbert spaces, with a mean absolute error of 0.13 kcal=mol
(5 meV). This accuracy requires correlation of the 3p semicore electrons and in some cases the 3s
manifold, along with extrapolation of the correlation energies to the complete-basis-set limit, and provides
a new theoretical benchmark for the ionization potentials of these systems.
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The chemical versatility of the 3dn transition-metal
atoms, which makes them key components in electron-
transfer catalysis as well as numerous technological
applications, derives in large part from their ability to exist
in multiple oxidation as well as spin states [1–13].
Furthermore, electron removal energies are probed by
spectroscopies such as photoemission and are also signifi-
cant in theoretical terms, because the ionization potentials
(IPs) determine the position of poles in spectral functions
(such as frequency-dependent single-particle Green’s func-
tions) [14] and are therefore crucial references for Green’s
function theories of excitation energies [15,16]. The accu-
rate theoretical treatment of IPs of these 3d systems has
proven particularly challenging for ab initio theories. On
the one hand, the removal of electrons leads to a significant
rearrangement of the electronic configurations including
changing the occupancy in the 3d shell, and, on the other,
the concomitant shrinkage of the electron cloud results in a
considerable contribution from dynamical correlation, the
description of which requires large basis sets. In addition,
scalar relativistic effects have been shown to play a
significant role, typically contributing ∼1.5 kcal=mol to
the final result [17]. Recent work has estimated the size of
this relativistic contribution by using the Douglas-Kroll-
Hess theory [10,18–20] and has highlighted the importance
of the interplay between correlation and relativistic effects.
The relativistic multireference averaged coupled-pair func-
tional theory with core-valence corrections yields a mean-
absolute error (MAE) of 0.5 kcal=mol, while the most
accurate calculations to date are based on a composite
coupled-cluster approach taken to the single, double, triple,
quadruple (CCSDTQ) level of theory [21] and improve the
MAE to 0.3 kcal=mol.
In this Letter, we use the recently developed initiator

full configuration-interaction quantum Monte Carlo
(i-FCIQMC) technique to compute the IPs of the 3d

transition-metal atoms. This technique is capable of con-
verging upon an exact description of the correlated
electronic wave functions expanded in extremely large
Slater-determinant spaces while, through its annihilation
step, suppressing the sign problem which plagues con-
tinuum space projector quantum Monte Carlo methods
[22,23]. For example, in a recent study of the first-row
dimers, spaces exceeding 1019 determinants were success-
fully sampled [24], rising to 10108 in a study of a
54-electron uniform electron gas [25]. Nevertheless, a
number of significant challenges must be overcome, as
a straightforward application of the i-FCIQMC method
does not suffice. In the first place, it is necessary to work
in the complete-basis-set limit, which can be approached
only by basis-set extrapolation methods. This requires the
correlation energies to be computed in basis sets of
increasing cardinal number, which greatly impacts the
computational cost. Second, as the systems considered
consist of a relatively large number of electrons, it is pro-
hibitive to perform all-electron calculations. While freezing
electrons is simple within the i-FCIQMC method, the
impact of so doing on the accuracy of the IPs must be
determined. In particular, the 3s and 3p semicore electrons
can significantly correlate with the valence electrons, but
the correlation of all semicore electrons is computationally
very expensive. Finally, to take account of scalar relativity,
we use the Douglas-Kroll-Hess theory [26] with the
associated augmented correlation-consistent polarized
valence X-zeta (aug-cc-pVXZ-DK) basis sets [17,21] to
compute the necessary one- and two-electron integrals [27].
We demonstrate that, with a judicious application of this

methodology, it is indeed possible to improve substantially
upon the accuracy reported in previous benchmark studies,
yielding a new benchmark with a MAE of 0.13 kcal=mol.
The study also highlights an intellectually pleasing feature
of the i-FCIQMC method, in that the energies which it
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yields need only be extrapolated before being used directly
in calculating the IPs accurately, avoiding the need for
composite approaches.
Methodological overview.—The full details of the

i-FCIQMC method have been expounded elsewhere
[24,28–32], and the following represents only a brief
summary.
Beginning with a single, signed walker on the Hartree-

Fock determinant, an iterative algorithm of “spawning,”
“death,” and annihilation steps builds up an ensemble of
walkers on excited determinants throughout the Hilbert
space, such that the coefficients fCig of a wave function are
represented by the signed sum of those walkers on each
determinant jDii in the space. The initial growth of walkers
is exponential, but this can be stabilized by allowing a
population-control parameter μ (which also provides an
energy estimator) to vary. As in previous studies [24,33],
we find here that a total walker population such that the
number residing on the leading determinant, N0 ¼ 50 000,
is generally suitable to ensure that any systematic error is
small. Once the ensemble has equilibrated, the simulation is
allowed to evolve in imaginary time until the statistical
errors in both μ and a projected-energy estimator Eproj
have been satisfactorily reduced and perform a Flyvbjerg-
Petersen blocking analysis to estimate the error in the
obtained result [34].
The final point to note here is that spin-orbit coupling

effects have not been included in these calculations.
The experimental values to which we compare have,
therefore, been removed of the effects of spin-orbit cou-
pling and reflect the j-averaged values using experimental
splittings [35–39].
Frozen-core calculations.—Complete-basis-set limit

ionization potentials are computed as the difference
between the separately extrapolated energies [40] of the

neutral and cationic species: EðCBSÞ
ion ¼ EðCBSÞ

N−1 − EðCBSÞ
N .

These extrapolations, of the inverse-cube, two-point type
[41,42], are performed on the correlation energies, with the
extrapolated value then added to the corresponding
Hartree-Fock energy in the X ¼ 5 basis. We begin by

correlating only the 4s and 3d electrons, holding the lower-
lying 18-electron core frozen.
Apart from the very heaviest of these atoms, Cu and Zn,

whose semicore electrons are rather corelike and thus
contribute only weakly to the overall correlation, the
ionization potentials achieved in Table I are not within
chemical accuracy (taken to be within �1 kcal=mol) of
the experimental values. The trend in the errors in these
calculations compared to the experimental results, however,
does bear qualitative agreement with that observed in
valence-only coupled-cluster (CC) studies [21], suggesting
that it is a product of genuine correlation effects and not
some artefact of numerical error. It is clear, therefore, that,
although these calculations are convenient and inexpensive
to perform, a tractable means must be sought by which to

TABLE I. Frozen-core i-FCIQMC ionization potentials in kcal/mol of the first-row transition metals. The number in parentheses
denotes the error in the previous digit,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δE2
N−1 þ δE2

N

p

, with the values δE obtained through a Flyvbjerg-Petersen blocking analysis [34]
of EðτÞ. The j-averaged experimental results Eexpt [35–39] are also displayed, along with the term symbols and 4s3d occupancies of the
neutral and cationic species.

System Sc Ti V Cr Mn Fe Co Ni Cu Zn

X 2Dð4s23d1Þ 3Fð4s23d2Þ 4Fð4s23d3Þ 7Sð4s13d5Þ 6Sð4s23d5Þ 5Dð4s23d6Þ 4Fð4s23d7Þ 3Fð4s23d8Þ 2Sð4s13d10Þ 1Sð4s23d10Þ
Xþ 3Dð4s13d1Þ 4Fð4s13d2Þ 5Dð3d4Þ 6Sð3d5Þ 7Sð4s13d5Þ 6Dð4s13d6Þ 3Fð3d8Þ 2Dð3d9Þ 1Sð3d10Þ 2Sð4s13d10Þ
Eð3Þ
ion 147.797(1) 153.890(1) 157.258(4) 152.899(6) 169.387(5) 180.402(5) 186.144(3) 179.228(2) 176.282(4) 214.922(3)

Eð4Þ
ion 147.961(1) 154.704(2) 156.818(2) 152.376(5) 169.69(1) 180.822(8) 185.226(2) 178.461(3) 177.060(7) 215.696(5)

EðCBSÞ
ion 148.10 155.32 156.63 151.99 169.94 181.16 184.59 178.07 177.69 216.32

Eexpt 151.32 157.47 155.25 156.04 171.48 182.27 181.47 175.12 178.17 216.63

FIG. 1 (color). Schematic diagram of an allowed particle-hole
excitation. On the left is shown the Hartree-Fock determinant
(specifically, the Cr atom is illustrated), and on the right is an
excited determinant in which the two “red” electrons have been
promoted into the virtual manifold. One of these electrons is
drawn from the 3p shell, and hence the determinant on the right
would be admissible with nh;3p ≥ 1 but would be disallowed in
the previous frozen-core regime. No such restriction is placed on
electrons of the valence manifold.
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treat core-valence effects, as has been suggested in previous
studies [17,21].
Correlating the 3p manifold.—Correlating all of the 3p

electrons entails such an increase in complexity that it
has been found to pose computational difficulties for other
high-level theories even in the smaller triple-ζ basis [21].
Such an expansion can, however, be avoided while still
treating the semicore electrons. To achieve this, we expand
the Hilbert space by including determinants in which some
small number of holes, at most nh;3p, may appear in the 3p
shell—an approach which has been successful in other
theories [43–45]. It is important to note that this approach
does not simply allow excitations of nh;3p specific 3p
electrons, but rather we allow excitations of any of the
3p4s3dmanifold into the full virtual space, provided that at
most nh;3p electrons are drawn from the 3p as illustrated in
Fig. 1. As in the previous section, we perform two-point

extrapolations to obtain EðCBSÞ
ion for each atom at each level

of semicore treatment.
The scale of the saving in terms of Hilbert space size

(accounting for symmetry) is significant. Thus, for the Ni
atom in the aug-cc-pVQZ-DK basis, the frozen-core space
contains Oð1015Þ determinants, and a full treatment of the
3pmanifold requiresOð1023Þ. In contrast, the nh;3p ¼ 1, 2,
and 3 spaces contain Oð1016Þ, Oð1017Þ, and Oð1019Þ
determinants, respectively. Convergence was achieved in
all the calculations of this section by using under 108

walkers. Increasing the hole number in the semicore
manifold beyond two holes brings virtually no benefit in
accuracy while substantially increasing the cost of the
simulations.
As listed in Table II and illustrated in Fig. 2, this

approach recovers chemically accurate ionization potentials
for the majority of systems upon allowing a single 3p hole,
with the values obtained converging upon increasing nh;3p.
It is worth noting also that the ionization potentials which

are successfully treated in this regime converge with respect
to nh;3p from below, implying (since the method is varia-
tional) that, for a given element, there is comparatively more
to be gained by treating the 3p electrons of the neutral atom
than the cation. This we can rationalize by considering that
the corelike electrons of the charged species are likely much
more contracted than those in the corresponding neutral

species, and hence excitations therefrom play a much less
prominent role in the overall description of the system.
Likewise, we may suggest why there is in general more

to be gained by allowing a hole in a lighter atom than a
heavier one. In the former case, the semicore electrons will
be relatively less corelike, and hence one would expect their
excitations to contribute more significantly to the FCI
expansion. Indeed, previous work has stressed the impor-
tance of treating these effects in the cases of Sc and Ti [46],
which prove difficult for effective core potential treatments
even at the level of Hartree-Fock [47]. Conversely, the 3p
electrons of, say, Fe and, in particular, Cu and Zn, are much
more corelike, and very little extra correlation is captured in
expanding the Hilbert space to include them.
Correlating the 3s3p manifold.—Though a treatment of

the 3pmanifold alone captures the correlation effects of the
majority of systems, it is immediately clear from the upper
panel of Fig. 2 that the three elements V, Co, and Ni, which
have previously proven more challenging for ab initio
methods [17,21], defy the general trend across the period.
These are the three systems whose cations have a greater

TABLE II. Complete-basis-set limit ionization potentials in kcal/mol of the elements Sc to Ni with the allowed number of 3p holes,
nh;3p, compared to the experimental results [35–39].

System Sc Ti V Cr Mn Fe Co Ni

EðCBSÞ
ion ðnh;3p ¼ 1Þ 151.41 157.30 150.60 155.32 171.18 182.27 183.97 178.78

EðCBSÞ
ion ðnh;3p ¼ 2Þ 151.07 157.31 157.91 156.64 171.54 182.38 186.06 179.78

EðCBSÞ
ion ðnh;3p ¼ 3Þ 151.29 157.30 158.34 156.79 171.61 182.43 186.18 179.61

Eexpt 151.32 157.47 155.25 156.04 171.48 182.27 181.47 175.12

FIG. 2 (color). Convergence in complete-basis-set limit ioniza-
tion potentials for the first-row transition-metal atoms compared
to their experimental values with the allowed number of 3p holes,
nh;3p (upper panel), and the allowed number of 3s3p holes,
nh;3s3p (lower panel). Note that the 3s3p results for Co and Ni are
achieved with Q5 extrapolations, while TQ extrapolations suffice
for the remainder.
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3d occupancy than their neutral atoms and zero 4s
occupancy, which correspondingly require a treatment of
both 3p and 3s manifolds, since these electrons interact
most strongly with the 3d [2].
Within the framework we have already introduced, this

treatment may be accomplished by stipulating that at most
nh;3s3p electrons may be excited from the 3s3p shells while
continuing to correlate the 4s3d levels fully. These larger
spaces entail more expensive calculations than those of the
previous section but are still comparatively modest when
set against the notion of fully correlating the 3s3p4s3d
electrons.
As shown in Table III, allowing up to two holes in this

expanded subspace and making the usual extrapolation
provides a satisfactory treatment for vanadium, with little
gained upon allowing the third. It also improves the
description of Cr and Cu, whose cations similarly have
no 4s electrons, as well as the largest atom, Zn. However,
while this trend in convergence is replicated for Co and Ni,
the values obtained exceed the experimental result by over
1 kcal=mol. This discrepancy appears to be a function of
extrapolating to the complete-basis-set limit from bases

which are too small, since these systems with compara-
tively many active electrons place greater demands upon
the resolution of the basis set. Indeed, if we extrapolate to
the complete-basis-set limit as in previous sections but with
correlation energies obtained from aug-cc-pVQZ-DK and
the larger aug-cc-pV5Z-DK basis, as shown in the latter
part of Table III and illustrated in the lower panel of Fig. 2,
then chemically accurate ionization potentials emerge.
Conclusions.—Chemically accurate ionization potentials

have been obtained for the first-row transition-metal
atoms with a mean absolute error of 0.126 kcal=mol via
i-FCIQMC calculations and two-point extrapolations to the
complete-basis-set limit, with Douglas-Kroll-Hess scalar
relativistic effects included. Such calculations smoothly
converge to their experimental values with respect to the
maximum number of holes nh in the semicore manifold
which determinants in the Hilbert space are permitted to
contain. In the majority of cases, it is sufficient to use the
3p electrons as this manifold, but those elements whose
cations have greater 3d occupancy than their neutral species
demand the addition of the 3s as well. Moreover, it is
usually adequate to perform the basis-set extrapolation by
using the X ¼ 3 and 4 basis sets, but the number of
comparatively active electrons present in the heavy atoms
Co and Ni demand an X ¼ 5 treatment, too. As summa-
rized in Table IV, the present work establishes a new
theoretical benchmark for the ionization potentials of the
3d atoms, significantly improving upon previously reported
Monte Carlo [48], multireference, and state-of-the-art
coupled cluster results [21]. Also of note is that, while
CC methods achieve IPs with a composite approach of
successive corrections to an initial calculation, the energies
from the i-FCIQMC method in an appropriately chosen
Hilbert space need only be extrapolated before being used
directly. It is hoped, therefore, that this approach will
provide the framework to extend the i-FCIQMC method to
the study of the challenging 3d transition-metal dimers and
molecules.

TABLE III. Complete-basis-set limit ionization potentials in kcal/mol of the elements V, Cr, Co, and Ni with the allowed number of
3s3p holes, nh;3s3p. The TQ extrapolation (from aug-cc-pVTZ-DK and aug-cc-pVQZ-DK calculations) provides an adequate
description for V and Cr, but a quintuple-ζ treatment is demanded by Co and Ni. As in previous tables, the experimental results are
shown for comparison [17,21,35–39].

Extrapolation System V Cr Co Ni Cu Zn

TQ EðCBSÞ
ion ðnh;3s3p ¼ 1Þ 147.38 154.90 180.46 175.32 178.08 216.71

EðCBSÞ
ion ðnh;3s3p ¼ 2Þ 155.31 155.98 182.93 176.14 � � � � � �

EðCBSÞ
ion ðnh;3s3p ¼ 3Þ 155.43 156.19 182.78 176.20 � � � � � �

Q5 EðCBSÞ
ion ðnh;3s3p ¼ 1Þ � � � � � � 180.00 174.67 � � � � � �

EðCBSÞ
ion ðnh;3s3p ¼ 2Þ � � � � � � 181.84 175.95 � � � � � �

EðCBSÞ
ion ðnh;3s3p ¼ 3Þ � � � � � � 181.66 175.26 � � � � � �

Eexpt 155.25 156.04 181.47 175.12 178.17 216.63

TABLE IV. Comparison of the MAEs of the calculated IPs
using (nonrelativistic) variational (VMC) and diffusion
Monte Carlo (DMC) [48] and relativistic multireference averaged
coupled-pair functional (ACPF) [using both ACPF and CCSD(T)
for the core-valence correction, ΔEcv] [21], CCSD(T) [17], and
state-of-the-art CC methods [21] to the present work.

Method MAE (kcal/mol)

VMC 16.860
DMC 9.665
ACPF (ACPF-ΔEcv) 0.658
ACPF [CCSD(T)-ΔEcv] 0.502
CCSD(T) 0.325
State-of-the-art CC 0.305
i-FCIQMC 0.126
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