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The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of
symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to
formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and
topology-dependent ground state degeneracy. However, the partition functions from path integrals with
various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge
fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology.
This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT
invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-
gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-
gravity actions for U(1) SPTs in ð4þ 1ÞD via the gravitational Chern-Simons term. Field theory
representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in
designing physical probes for them. In addition, our field theory representations are independently
powerful for studying group cohomology within the mathematical context.
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Gapped systems without symmetry breaking [1,2] can
have intrinsic topological order [3–5]. However, even
without symmetry breaking and without topological order,
gapped systems can still be nontrivial if there is certain
global symmetry protection, known as symmetry-protected
topological states (SPTs) [6–9]. Their nontrivialness can be
found in the gapless-topological boundary modes protected
by a global symmetry, which shows gauge or gravitational
anomalies [10–30]. More precisely, they are short-range
entangled states which can be deformed to a trivial product
state by local unitary transformation [31–33] if the defor-
mation breaks the global symmetry. Examples of SPTs
are Haldane spin-1 chains protected by spin rotational
symmetry [34,35] and the topological insulators [36–38]
protected by fermion number conservation and time rever-
sal symmetry.
While some classes of topological orders can be

described by topological quantum field theories (TQFT)
[39–42], it is less clear how to systematically construct field
theory with a global symmetry to classify or characterize
SPTs for any dimension. This challenge originates from
the fact that SPTs are naturally defined on a discretized
spatial lattice or on a discretized spacetime path integral
by a group cohomology construction [6,43] instead of
continuous fields. Group cohomology construction of
SPTs also reveals a duality between some SPTs and the
Dijkgraaf-Witten topological gauge theory [43,44].
Some important progress has been recentlymade to tackle

the above question. For example, there are the ð2þ 1ÞD
[45] Chern-Simons theory [46–50], nonlinear sigma

models [51,52], and an orbifolding approach implementing
modular invariance on 1D edge modes [25,28]. The above
approaches have their own benefits, but they may be either
limited to certain dimensions, or be limited to some special
cases. Thus, the previous works may not fulfill all SPTs
predicted from group cohomology classifications.
In this work, we will provide a more systematic way to

tackle this problem by constructing topological response
field theory and topological invariants for SPTs (SPT
invariants) in any dimension protected by a symmetry
groupG. The new ingredient of our work suggests a one-to-
one correspondence between the continuous semiclassical
probe-field partition function and the discretized cocycle
of cohomology group,Hdþ1ðG;R=ZÞ, predicted to classify
ðdþ 1ÞD SPTs with a symmetry group G [53]. Moreover,
our formalism can even attain SPTs beyond group coho-
mology classifications [16–18,20–22].
For systems that realize topological orders, we can

adiabatically deform the ground state jΨg:s:ðgÞi of param-
eters g via

hΨg:s:ðgþ δgÞjΨg:s:ðgÞi≃…Z0… ð1Þ

to detect the volume-independent universal piece of par-
tition function Z0, which reveals the non-Abelian geo-
metric phase of ground states [5,30,54–59]. For systems
that realize SPTs, however, their fixed-point partition
functions Z0 always equal to 1 due to its unique ground
state on any closed topology. We cannot distinguish SPTs
viaZ0. However, due to the existence of a global symmetry,
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we can use Z0 with the symmetry twist [60–62] to probe
the SPTs. To define the symmetry twist, we note that
the Hamiltonian H ¼ P

xHx is invariant under the
global symmetry transformation U ¼ Q

all sitesUx, namely,
H ¼ UHU−1. If we perform the symmetry transformation
U0 ¼ Q

x∈∂RUx only near the boundary of a region R (say
on one side of ∂R), the local termHx ofH will be modified
Hx → H0

xjx near∂R. Such a change along a codimension-1
surface is called a symmetry twist, see Figs. 1(a) and 1(d),
which modifiesZ0 toZ0ðsym twistÞ. Just like the geometric
phases of the degenerate ground states characterize topo-
logical orders [30], we believe that Z0ðsym twistÞ, on
different spacetime manifolds and for different symmetry
twists, fully characterizes SPTs [60,61].
The symmetry twist is similar to gauging the on-site

symmetry [44,69] except that the symmetry twist is non-
dynamical. We can use the gauge connection 1-form A to
describe the corresponding symmetry twists, with probe-
fields A coupling to the matter fields of the system. So we
can write [53]

Z0ðsym twistÞ ¼ eiS0ðsym twistÞ ¼ eiS0ðAÞ: ð2Þ
Here, S0ðAÞ is the SPT invariant that we search for.
Equation (2) is a partition function of classical probe

fields, or a topological response theory, obtained by inte-
grating out the matter fields of SPTs path integral. Below
we would like to construct possible forms of S0ðAÞ based
on the following principles [53]: (i) S0ðAÞ is independent
of spacetime metrics (i.e., topological), (ii) S0ðAÞ is gauge
invariant (for both large and small gauge transformations),
and (iii) the “almost flat” connection for probe fields.
Let us start with a simple example of SPTs with a

single global U(1) symmetry. We can probe the system
by coupling the charge fields to an external probe 1-form
field A [with a U(1) gauge symmetry], and integrate out the
matter fields. In ð1þ 1ÞD, we can write down a partition
function by dimensional counting: Z0ðsym twistÞ ¼
exp½iðθ=2πÞ R F�withF≡ dA, this is the only term allowed
by U(1) gauge symmetry U†ðA − idÞU ≃ Aþ df with
U ¼ eif. More generally, for an even ðdþ 1ÞD spacetime,
Z0ðsymtwistÞ¼ exp½iðθ=½(ðdþ1Þ=2)!ð2πÞ(ðdþ1Þ=2)�ÞR F∧
F∧…�. Note that θ in such an action has no level
quantization (θ can be an arbitrary real number). Thus, this
theory does not really correspond to any nontrivial class,
because any θ is smoothly connected to θ ¼ 0, which
represents a trivial SPTs.
In an odd dimensional spacetime, such as ð2þ 1ÞD, we

have Chern-Simons coupling for the probe field action
Z0ðsym twistÞ ¼ exp½iðk=4πÞ R A ∧ dA�. More generally,
for an odd ðdþ 1ÞD, Z0ðsym twistÞ ¼ exp½ið2πk=
(ðdþ 2Þ=2)!ð2πÞðdþ2Þ=2Þ R A ∧ F ∧ …�, which is known
to have level quantization k ¼ 2p, with p ∈ Z for bosons,
sinceU(1) is compact.We see that only quantized topological
terms correspond to nontrivial SPTs, the allowed responses
S0ðAÞ reproduce the group cohomology description of the
U(1) SPTs: an even dimensional spacetime has no nontrivial
class, while an odd dimension has a Z class.
Next we consider SPTs with

Q
uZNu

symmetry.
Previously the evaluation of the U(1) field on a closed
loop (Wilson loop)

H
Au can be arbitrary values, whether

the loop is contractable or not, since U(1) has continuous
value. For finite Abelian group symmetry G ¼ Q

uZNu

SPTs, (i) the large gauge transformation δAu is identified
by 2π [this also applies to U(1) SPTs]. (ii) probe fields have
discrete ZN gauge symmetry,

I
δAu ¼ 0ðmod 2πÞ;

I
Au ¼

2πnu
Nu

ðmod 2πÞ: ð3Þ

For a noncontractable loop (such as an S1 circle of a torus),
nu can be a quantized integer which thus allows large gauge
transformation. For a contractable loop, due to the fact
that a small loop has small

H
Au but nu is discrete,

H
Au ¼ 0

and nu ¼ 0, which imply the curvature dA ¼ 0; thus, A is a
flat connection locally.
For ð1þ 1ÞD, the only quantized topological term is

Z0ðsym twistÞ ¼ exp½ikII
R
A1A2�. Here and below we omit

the wedge product ∧ between gauge fields as a conven-
tional notation. Such a term is gauge invariant under

FIG. 1 (color online). On a spacetime manifold, the 1-form
probe-field A can be implemented on a codimension-1 symmetry
twist [60,61] (with flat dA ¼ 0) modifying the Hamiltonian H,
but the global symmetryG is preserved as a whole. The symmetry
twist is analogous to a branch cut, going along the arrow ---▹
would obtain an Aharonov-Bohm phase eig with g ∈ G by
crossing the branch cut [Fig. (a) for two dimensions, Fig. (d) for
three dimensions]. However, if the symmetry twist ends, its ends
are monodromy defects with dA ≠ 0, effectively with a gauge
flux insertion. Monodromy defects in (b) of two dimensions act
like 0D point particles carrying flux [26,44,60,63,64], in (e) of
three dimensions act like 1D line strings carrying flux [65–68].
The nonflat monodromy defects with dA ≠ 0 are essential to
realize

R
AudAv and

R
AuAvdAw for two and three dimensions,

while the flat connections (dA ¼ 0) are enough to realize the
top type

R
A1A2…Adþ1, whose partition function on a spacetime

Tdþ1 torus with (dþ 1) codimension-1 sheets intersection
[shown in (c),(f) in ð2þ 1ÞD, ð3þ 1ÞD] renders a nontrivial
element for Eq. (2).
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transformation if we impose flat connection dA1 ¼
dA2 ¼ 0, since δðA1A2Þ¼ ðδA1ÞA2þA1ðδA2Þ¼ ðdf1ÞA2þ
A1ðdf2Þ¼−f1ðdA2Þ− ðdA1Þf2¼ 0. Here we have aban-
doned the surface term by considering a ð1þ 1ÞD closed
bulk spacetime M2 without boundaries. The level quan-
tization of kII and its group structure can be derived
from two rules: large gauge transformation and flux
identification.
The invariance of Z0 under the allowed large gauge

transformation via Eq. (3) implies that the volume-
integration of

R
δðA1A2Þ must be invariant mod 2π,

namely, ½(ð2πÞ2kII)=N1� ¼ ½(ð2πÞ2kII)=N2� ¼ 0ðmod 2πÞ.
This rule implies the level quantization.
On the other hand, when the ZN1

flux from A1, and
ZN2

flux from A2 are inserted as n1, and n2 multiple
units of 2π=N1, and 2π=N2, we have kII

R
A1A2 ¼

kII(ð2πÞ2=N1N2)n1n2. We see that kII and k0II ¼ kII þ
ðN1N2=2πÞ give rise to the same partition function
Z0. Thus they must be identified ð2πÞkII ≃ ð2πÞkIIþ
N1N2, as the rule of flux identification. These two rules
impose

Z0ðsym twistÞ ¼ exp
�
ipII

N1N2

ð2πÞN12

Z
M2

A1A2

�
; ð4Þ

1with kII ¼ pII(ðN1N2Þ=½ð2πÞN12�), pII ∈ ZN12
. We

abbreviate the greatest common divisor (gcd) N12…u≡
gcdðN1; N2;…; NuÞ. Amazingly, we have independently
recovered the formal group cohomology classification
predicted as H2ðQuZNu

;R=ZÞ ¼ Q
u<vZNuv

.
For ð2þ 1ÞD, we can propose a naive Z0ðsym twistÞ by

dimensional counting, exp½ikIII
R
A1A2A3�, which is gauge

invariant under the flat connection condition. By the large
gauge transformation and the flux identification, we find
that the level kIII is quantized [53], thus

Z0ðsym twistÞ ¼ exp

�
ipIII

N1N2N3

ð2πÞ2N123

Z
M3

A1A2A3

�
; ð5Þ

named as type III SPTs with a quantized level pIII ∈ ZN123
.

The terminology “type” is introduced and used in
Refs. [70] and [67]. As shown in Fig. 1, the geometric
way to understand the 1-form probe field can be regarded as
(the Poincaré dual of) the codimension-1 sheet assigning a
group element g ∈ G by crossing the sheet as a branch cut.
These sheets can be regarded as symmetry twists [60,61]
in the SPT Hamiltonian formulation. When three sheets
[yt, xt, xy planes in Fig. 1(c)] with nontrivial elements
gj ∈ ZNj

intersect at a single point of a spacetime T3 torus,
it produces a nontrivial topological invariant in Eq. (2) for
Type III SPTs.
There are also other types of partition functions, which

require us to use the insert flux dA ≠ 0 only at the
monodromy defect [i.e., at the end of the branch cut, see
Fig. 1(b)] to probe them [11,48–50,70,71]:

Z0ðsym twistÞ ¼ exp

�
i
p
2π

Z
M3

AudAv

�
; ð6Þ

where u; v can be either the same or different gauge fields.
They are type I, and II actions: pI;1

R
A1dA1, pII;12

R
A1dA2,

etc. In order to have eiðpII=2πÞ
R
M3 A1dA2 invariant under the

large gauge transformation, pII must be integer. In order to

have eiðpI=2πÞ
R
M3 A1dA1 well defined, we separate A1 ¼ Ā1 þ

AF
1 to the nonflat part A1 and the flat part AF

1 . Its partition

function becomes eiðpI=2πÞ
R
M3 A

F
1
dĀ1 [53]. The invariance

under the large gauge transformation of AF
1 requires pI to

be quantized as integers. We can further derive their level
classification via Eq. (3) and two more conditions:

∯ Av ¼ 0ðmod 2πÞ; ∯ δdAv ¼ 0: ð7Þ

The first means that the net sum of all monodromy-defect
fluxes on the spacetime manifold must have integer units
of 2π. Physically, a 2π flux configuration is trivial for a
discrete symmetry group ZNv

. Therefore, two SPT invar-
iants differ by a 2π flux configuration on their monodromy
defect should be regarded as the same one. The second
condition means that the variation of the total flux is zero.
From the above two conditions for flux identification,
we find the SPT invariant Eq. (6) describes the ZN1

SPTs
pI ∈ ZN1

¼ H3ðZN1
;R=ZÞ and the ZN1

× ZN2
SPTs

pII ∈ ZN12
⊂ H3ðZN1

× ZN2
;R=ZÞ [53].

For ð3þ 1ÞD, we derive the top type IV partition
function that is independent of spacetime metrics:

Z0ðsym twistÞ ¼ exp

�
i
pIVN1N2N3N4

ð2πÞ3N1234

Z
M4

A1A2A3A4

�
;

ð8Þ

where dAi ¼ 0 to ensure gauge invariance. The large
gauge transformation δAi of Eq. (3), and flux identification
recover pIV ∈ ZN1234

⊂ H4ðQ4
i¼1 ZNi

;R=ZÞ. Here the 3D
SPT invariant is analogous to two dimensions, when the
four codimension-1 sheets [yzt, xzt, yzt, and xyz-branes
in Fig. 1(f)] with flat Aj of nontrivial element gj ∈ ZNj

intersect at a single point on spacetime T 4 torus; it renders
a nontrivial partition function for the type IV SPTs.
Another response is for type III ð3þ 1ÞD SPTs:

Z0ðsym twistÞ ¼ exp

�
i
Z
M4

pIIIN1N2

ð2πÞ2N12

A1A2dA3

�
; ð9Þ

which is gauge invariant only if dA1 ¼ dA2 ¼ 0. Based
on Eqs. (3) and (7), the invariance under the large gauge
transformations requirespIII ∈ ZN123

. Equation (9) describes
type III SPTs: pIII ∈ ZN123

⊂ H4ðQ3
i¼1 ZNi

;R=ZÞ [53].
Yet another response is for type II ð3þ 1ÞDSPTs

[72,73]:
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Z0ðsym twistÞ ¼ exp

�
i
Z
M4

pIIN1N2

ð2πÞ2N12

A1A2dA2

�
: ð10Þ

The above is gauge invariant only if we choose A1 and A2

such that dA1 ¼ dA2dA2 ¼ 0. We denote A2 ¼ Ā2 þ AF
2 ,

where Ā2dĀ2 ¼ 0, dAF
2 ¼ 0,

H
Ā2 ¼ 0 mod 2π=N2, andH

AF
2 ¼ 0 mod 2π=N2. Note that in general dĀ2 ≠ 0,

and Eq. (10) becomes ei
R
M4 ðpIIN1N2=ð2πÞ2N12ÞA1AF

2
dĀ2 . The

invariance under the large gauge transformations of A1

and AF
2 and flux identification requires pII ∈ ZN12

¼
H4ðQ2

i¼1 ZNi
;R=ZÞ of type II SPTs [53]. For Eqs. (9)

and (10), we have assumed the monodromy line defect at
dA ≠ 0 is gapped [65,67]; for gapless defects, one will need
to introduce extra anomalous gapless boundary theories.
Nowwe systematically study the physical probes of SPTs

[53]. The SPT invariants can help us to design physical
probes for their SPTs. Let us consider Z0ðsym twistÞ ¼
exp½ipðQdþ1

j¼1 Nj=ð2πÞdN123…ðdþ1ÞÞ
R
A1A2…Adþ1�, a gen-

eric top type
Qdþ1

j¼1 ZNj
SPT invariant in ðdþ 1ÞD, and its

observables.
If we design the space to have a topology ðS1Þd, and

add the unit symmetry twist of the ZN1
; ZN2

;…, ZNd
to the

S1 in d directions, respectively,
H
S1 Aj ¼ 2π=Nj. The SPT

invariant implies that such a configuration will carry a
ZNdþ1

induced charge pðNdþ1=N123…ðdþ1ÞÞ.
We can also apply dimensional reduction to probe SPTs.

We can design the dD space as ðS1Þd−1 × I, and add
the unit ZNj

symmetry twists along the jth S1 circles for
j ¼ 3;…; dþ 1. This induces a ð1þ 1ÞD ZN1

× ZN2
SPT

invariant exp½ipðN12=N123…ðdþ1ÞÞðN1N2=2πN12Þ
R
A1A2�

on the 1D spatial interval I. The 0D boundary of the reduced
ð1þ 1ÞD SPTs has degenerate zero energy modes that
form a projective representation of ZN1

× ZN2
symmetry

[26]. For example, dimensionally reducing ð3þ 1ÞD SPTs
Eq. (8) to this ð1þ 1ÞD SPT, if we break the ZN3

symmetry
on the ZN4

monodromy defect line, gapless excitations on
the defect line will be gapped. A ZN3

symmetry-breaking
domain wall on the gapped monodromy defect line will
carry degenerate zero modes that form a projective repre-
sentation of ZN1

× ZN2
symmetry.

ForEq. (8)wedesign the3Dspace asS1 ×M2, and add the
unit ZN4

symmetry twists along the S1 circle. Then Eq. (8)
reduces to the ð2þ1ÞD ZN1

× ZN2
× ZN3

SPT invariant
exp½ipIVðN123=N1234ÞðN1N2N3=2πN123Þ

R
A1A2A3� labeled

by pIVðN123=N1234Þ∈ZN123
⊂H3ðZN1

×ZN2
×ZN3

;R=ZÞ.
Namely, the ZN4

monodromy line defect carries gapless
excitations identical to theedgemodes of the ð2þ 1ÞDZN1

×
ZN2

× ZN3
SPTs if the symmetry is not broken [60].

Now let us consider lower type SPTs, take ð3þ 1ÞDR
A1A2dA3 of Eq. (9) as an example [53]. There are at least

two ways to design physical probes. First, we can design
the 3D space as M2 × I, where M2 is punctured with N3

identical monodromy defects each carrying n3 unit ZN3

flux, namely, ∯ dA3 ¼ 2πn3 of Eq. (7). Equation (9)
reduces to exp½ipIIIn3ðN1N2=ð2πÞN12Þ

R
A1A2�, which

again describes a ð1þ 1ÞD ZN1
× ZN2

SPTs, labeled by
pIIIn3 of Eq. (4) in H2ðZN1

× ZN2
;R=ZÞ ¼ ZN12

. This
again has 0D boundary-degenerate-zero modes.
Second, we can design the 3D space as S1 ×M2

and add a symmetry twist of ZN1
along the S1:H

S1 A1 ¼ 2πn1=N1, then the SPT invariant Eq. (9)
reduces to exp½iðpIIIn1N2=ð2πÞN12Þ

R
A2dA3�, a ð2þ1ÞD

ZN2
× ZN3

SPTs labeled by ðpIIIn1N2=N12Þ of Eq. (6).
These

R
AdA types in Eq. (6), can be detected by the

nontrivial braiding statistics of monodromy defects, such as
the particle or string defects in two or three dimensions
[44,49,65–68]. Moreover, a ZN1

monodromy defect line
carries gapless excitations identical to the edge of the
ð2þ 1ÞD ZN2

× ZN3
SPTs. If the gapless excitations are

gapped by ZN2
-symmetry breaking, its domain wall will

induce fractional quantum numbers of ZN3
charge [26,74],

similar to the Jackiw-Rebbi [75] or Goldstone-Wilczek [76]
effect.
It is straightforward to apply the above results to

SPTs with Uð1Þm symmetry. Again, we find only trivial
classes for even ðdþ 1ÞD. For odd ðdþ 1ÞD, we
can define the lower type action: Z0ðsymtwistÞ¼
exp½ið2πk=(ðdþ2Þ=2)!ð2πÞðdþ2Þ=2ÞR Au∧Fv∧…�. Mean-
while, we emphasize that the top type action with
k
R
A1A2…Adþ1 form will be trivial for the Uð1Þm case

since its coefficient k is no longer well defined atN → ∞ of
ðZNÞm SPT states. For physically relevant ð2þ 1ÞD, k ∈
2Z for bosonic SPTs. Thus, we will have a Zm × Zmðm−1Þ=2
classification for Uð1Þm symmetry [53].
We have discussed the allowed action S0ðsym twistÞ that

is described by pure gauge fields Aj. We find that its allowed
SPTs coincide with group cohomology results. For a curved
spacetime, we have more general topological responses
that contain both gauge fields for symmetry twists and
gravitational connections Γ for spacetime geometry. Such
mixed gauge-gravity topological responses will attain SPTs
beyond group cohomology. The possibility was recently
discussed in Refs. [17,18]. Here we will propose some
additional new examples for SPTs with U(1) symmetry.
In ð4þ 1ÞD, the following SPT response exists:

Z0ðsym twistÞ ¼ exp

�
i
k
3

Z
M5

F ∧ CS3ðΓÞ
�

¼ exp

�
i
k
3

Z
N 6

F ∧ p1

�
; k ∈ Z; ð11Þ

where CS3ðΓÞ is the gravitations Chern-Simons 3-form and
dðCS3Þ ¼ p1 is the first Pontryagin class. This SPT
response is a Wess-Zumino-Witten form with a surface
∂N 6 ¼ M5. This renders an extra Z class of ð4þ 1ÞD U
(1) SPTs beyond group cohomology. They have the
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following physical property: If we choose the 4D space to
be S2 ×M2 and put a U(1) monopole at the center of S2:R
S2 F ¼ 2π, in the large M2 limit, the effective ð2þ 1ÞD
theory on M2 space is k copies of the E8 bosonic quantum
Hall states. A U(1) monopole in 4D space is a 1D loop. By
cutting M2 into two separated manifolds, each with a 1D-
loop boundary, we see the U(1) monopole and antimono-
pole as these two 1D loops, each loop carries k copies of the
E8 bosonic quantum Hall edge modes [77]. Their gravi-
tational response can be detected by thermal transport with
a thermal Hall conductance [78], κxy ¼ 8kðπ2k2B=3hÞT.
To conclude, the recently found SPTs, described by

group cohomology, have SPT invariants in terms of pure
gauge actions (whose boundaries have pure gauge anoma-
lies [11,13–15,26]). We have derived the formal group
cohomology results from an easily accessible field
theory setup. For beyond-group-cohomology SPT invari-
ants, while ours of bulk-onsite-unitary symmetry are
mixed gauge-gravity actions, those of other symmetries
(e.g., antiunitary-symmetry time-reversal ZT

2 ) may be pure
gravity actions [18]. SPT invariants can also be obtained
via cobordism theory [17–19], or via gauge-gravity actions
whose boundaries realizing gauge-gravitational anomalies.
We have incorporated this idea into a field theoretic
framework, which should be applicable for both bosonic
and fermionic SPTs and for more exotic states awaiting
future explorations.
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