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This Letter refines arguments forbidding nonlinear dynamical gravity from appearing in the low energy
effective description of field theories with local kinematics, even for those with instantaneous long-range
interactions. Specifically, we note that gravitational theories with universal coupling to energy—an
intrinsically nonlinear phenomenon—are characterized by Hamiltonians that are pure boundary terms on
shell. In order for this to be the low energy effective description of a field theory with local kinematics, all
bulk dynamics must be frozen and, thus, irrelevant to the construction. The result applies to theories defined
either on a lattice or in the continuum, and requires neither Lorentz invariance nor translation invariance.
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Introduction.—Attempts to directly quantize the gravi-
tational field encounter well-known difficulties associated
with a lack of perturbative renormalizability, the black hole
information problem, and the lack of local observables due
to invariance under diffeomorphism gauge symmetry
(which, from the active point of view, moves spacetime
points from one location to another). While it remains
possible that any or all of these issues may one day be
surmounted, it is, nevertheless, interesting to ask whether
diffeomorphism-invariant gravity—sometimes called back-
ground-independent gravity—might emerge an effective
approximate description of a system that is inherently better
behaved at the microscopic level.
Most leading approaches to quantum gravity embody

ideas along these lines. String theory, loop quantum gravity,
causal sets [1], and causal dynamical triangulations [2]
(see, e.g., [3] for a recent overview) all propose that smooth
classical geometries arise only in appropriate semiclassical
limits. (Asymptotic safety is the most prominent exception;
see, e.g., [4,5] for recent reviews.) But the structures
underlying these theories again involve novel physics that
is difficult to control. So, it is natural to ask if gravity can
arise from more familiar systems such as field theories with
local kinematics. Examples of such proposals include
[6–22]. Below, we argue that such scenarios can succeed
only if the map to gravitational degrees of freedom involves
long-range nonlocality, i.e., only if the notions of locality
are very different in the two descriptions. We emphasize
that we focus here on whether gravitational theories with an
appropriate form of diffeomorphism-invariance (or what is
often called independence from background structures) can
emerge as effective descriptions of theories built on familiar
background structures such as fixed (nondynamical) space-
time lattices or smooth spacetimes with a metric; we make
no comment on the possible emergence of general relativity
from discrete theories of quantum gravity or on scenarios,
such as in [23,24], where the entire notion of time evolution
is, itself, emergent.

As has been well known for some time, the (spin-2)
Weinberg-Witten theorem [25] already excludes the emer-
gence of gravity from local Poincaré-invariant field theo-
ries. In particular, it forbids such theories from containing
an interacting massless spin-2 degrees of freedom in its
spectrum of asymptotic states. While clear and concise, the
technical assumption of Poincaré invariance appears to
leave open many doors for exploration. For example, one
might attempt to evade the theorem by working on a lattice
as in, e.g., [9,15,16,19,20], or by using other structures that
break this symmetry.
However, as noted in, e.g., [26,27], the lack of local

observables in quantum gravity suggests a more general
result forbidding diffeomorphism-invariant gravity arising
as the effective description of any theory with sufficiently
interesting local observables. Our purpose, here, is to make
this precise. Since any theory can be made diffeomorphism
invariant via a process known as parametrization (see, e.g.,
[28,29,29–37]), we follow [38] in using the gravitational
Gauss law to distinguish theories with sufficiently “inter-
esting” diffeomorphism invariance. The desired theories
roughly correspond to what are often called “background-
independent” theories of gravity.
Before stating our technical result in the next section, let

us, therefore, take a moment to explain this idea in broadly
accessible terms. First, we recall that (nonrelativistic)
Newtonian gravity can be formulated in terms of a
gravitational potential ϕ that satisfies a Poisson equation
∇2ϕ ¼ 4πGρM sourced by the mass density ρM. As a result,
the total mass M ¼ R

V ρMdV inside a volume V (with
volume element dV) can be expressed as the boundary term
M ¼ ð1=4πGÞ R∂V dSni∂iϕ where ∂i ¼ ð∂=∂xiÞ denotes
derivatives with respect to spatial coordinates xi, ni is
the unit (outward pointing) normal to the boundary ∂V, and
dS is the area element on ∂V. This is just the Newtonian
gravity analogue of Gauss’s law from electrostatics. Now,
in relativistic theories, the gravitational field couples not
just to mass, but to all forms of energy. As a result, in the

PRL 114, 031104 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

23 JANUARY 2015

0031-9007=15=114(3)=031104(5) 031104-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.031104
http://dx.doi.org/10.1103/PhysRevLett.114.031104
http://dx.doi.org/10.1103/PhysRevLett.114.031104
http://dx.doi.org/10.1103/PhysRevLett.114.031104


presence of appropriate boundary conditions, one finds a
corresponding Gauss-law-like boundary integral that
encodes the total energy E; see, e.g., [39] for a recent
review. This Gauss law for energy will turn out to be the
critical feature that forbids the theory from arising as
an effective description; the full Lorentz-invariance that
originally motivated the coupling to energy is not required.
(Lorentz-violating theories that couple universally to
energy may be constructed in analogy with Hořava-
Lifhshitz gravity [40], interchanging the roles of space
and time and replacing the extrinsic curvature of a preferred
foliation with the proper acceleration of a preferred family
of worldlines. The Einstein-Aether theory [41,42] also has
universal coupling and, at low energies, might be consid-
ered to violate Lorentz invariance.) It is useful to mention
here that the Gauss-law property is inherently nonlinear due
to the fact that the energy source term also receives
contributions from the gravitational field. As a result, in
parallel with the Weinberg-Witten theorem [25], our argu-
ments place no constraints on the emergence of strictly
linear spin-2 degrees of freedom.
As we explain below, the Gauss-law property will imply

that gravity can be a good effective description of a theory
with local kinematics only in limits where the bulk
dynamics freezes out away from the boundary. (The
dynamics is required to be local in time and generated
by a Hamiltonian. However, the Hamiltonian can be
nonlocal in space. We explicitly allow instantaneous
long-range interactions.) While there is nothing wrong
with such freeze out in and of itself, an interesting effective
gravitational description should remain nontrivial in the
bulk of the spacetime. (There are, of course, many theories
where bulk excitations are gapped at low energy.)
Consistency then requires that bulk gravitational physics
be the effective description of purely boundary dynamics in
the original theory. Modulo anomalies, the original bulk
theory served no purpose in the construction and may be
discarded. As a result, the notions of bulk vs boundary are
completely different in the original kinematically local
theory and the effective gravitational description. This is
the requisite nonlocality referred to in the title. The reader
will note that it also describes a paradigm embodied in
string theory by gauge-gravity duality (e.g., [43,44]).
Definitions and Results.—We begin the technical treat-

ment with two definitions that will allow us to sharply state
our result. Each definition is followed by comments to
provide clarity. Discussion of the main result will appear in
the Discussion section.
Definition 1.—A gravitational theory with universal

coupling to energy is one for which, in the presence of
any boundary conditions for which a Hamiltonian exists,
the total energy can be written as the integral over the
boundary of space at each time of some local function of
the gravitational field and its derivatives. Below, we refer to
the integrand of this boundary integral as the gravitational

flux. We require the gravitational flux to be an observable
(i.e., it is invariant under gauge transformations allowed by
the given boundary conditions).
We now make several remarks to clarify this definition.

See, e.g., [39] for any definitions and for further discussion
of the examples below. We will use the term Riemann-
curvature gravity theories to refer to Einstein-Hilbert
gravity together with its higher-derivative generalizations
described by Lagrangians that are local scalar functions of
the Riemann tensor and its derivatives.
Gravitational field: Note that we have not specified any

particular variables in terms of which this field is to be
expressed; our discussion is, thus, invariant under local
field redefinitions and is not restricted to metric theories.
Simultaneity: The phrasing implies that the spacetime

boundary admits a notion of “each time,” i.e., of which
points on the boundary are simultaneous. This notion need
not be unique; e.g., for Riemann-curvature gravity with
either anti–de Sitter (AdS) boundary conditions or Dirichlet
boundary conditions at a finite wall, any time function on
the boundary may be used to define simultaneity so long as
all pairs of points on its level surfaces are spacelike
separated. The notion of simultaneity is also allowed to
be trivial as in asymptotically flat Riemann-curvature
gravity where the boundary of space should be interpreted
as spacelike infinity (i0) and, in the usual representation,
all points at spacelike infinity are simultaneous. Indeed,
the entire notion of “boundary of space” can be trivial
so long as the total energy vanishes identically in such
cases; Riemann-curvature gravity for closed cosmologies
provides an example.
Total energy: This quantity is defined to be the

generator of (asymptotic) time evolution; i.e., it is the
Hamiltonian. This time evolution need not be a symmetry,
so the Hamiltonian may have explicit time dependence.
Observable gravitational flux: We remind the reader

that the gravitational flux at the boundary is, indeed, gauge
invariant in Riemann-curvature gravity since it can be
defined as the variation of the action (see, e.g., [45–49])
with respect to boundary conditions (which are by defi-
nition gauge invariant). It may also be useful to mention
that, while often not presented in this form, in Einstein-
Hilbert gravity with asymptotically flat [50] or asymptoti-
cally AdS boundary conditions [51,52], the gravitational
flux may be written in terms of the Weyl tensor at the
boundary. In this form, it more closely resembles the
familiar electric flux computed from the field strength of
a vector gauge field.
Heuristics, examples, and contrasting theories: The

idea behind calling the above property “universal coupling
to energy” is that there is an aspect of the gravitational field
(namely, the above boundary integral) which directly gives
the total energy of the system. Any Riemann-curvature
theory satisfies this definition (see, e.g., [53]). In contrast,
scalar (Nordström) gravity, Hořava-Lifshitz gravity [40],
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and massive gravity theories (see, e.g., [54] for a recent
review) do not have universal coupling to energy in this
sense; none of these theories have a Gauss law. (An
alternative definition of Hořava-Lifshitz gravity can be
given by imposing a hypersurface-orthogonality constraint
on the aether field of the Einstein-aether theory [55]. This
formulation inherits the Gauss law equation of motion of
the Einstein-aether theory. But it is now second class in the
sense of Dirac [56]. This requires the commutators to be
modified as in [56] so that the resulting theory is no longer
kinematically local in the sense of Definition 2. This
illustrates that Definitions 1 and 2 are most meaningful
when considered together.) We will not discuss such
theories further except to note that their behavior is,
generally, rather distinct [57–59] from theories with
universal coupling and that Nordström gravity does
appear to emerge from the dynamics of Bose-Einstein
condensates [60].
Definition 2.—Whether defined in the continuum or on a

spatial or space-time lattice, a theory will be said to be
kinematically local if and only if the commutator of two
gauge-invariant local Heisenberg-picture operators (with at
least one bosonic) vanishes when evaluated at different
spatial locations at a common time. We also assume that
time evolution is generated by some Hamiltonian. We again
provide the following clarifying comments.
Simultaneity: We require the theory to have a concept

of bulk simultaneity (i.e., when two spacetime events occur
at the same time). We assume this to be a background
structure independent of dynamical fields. As above, this
notion need not be unique; i.e., in a relativistic theory, it
will suffice to choose any time function that is constant on
spacelike surfaces. (By which we mean that there is no
causal connection between any two points on the surface.)
So, any theory built in the usual local way from scalar,
spinor, or vector fields is local in this sense.
Heisenberg picture: We assume the existence of a

Heisenberg picture, in which gauge-invariant operators at
each position ~x satisfy −iℏð∂=∂tÞOð~x; tÞ ¼ ½HðtÞ;Oð~x; tÞ�
for some (perhaps time-dependent) Hamiltonian HðtÞ. In
this sense, the dynamics is local in time, though HðtÞ may
be arbitrarily nonlocal in space. In particular, instantaneous
long-range interactions are allowed. So long as the com-
mutation relations satisfy Definition 2 at some initial time,
any unitary evolution ensures that they continue to hold at
all other times.
Bosonic operators: It is sufficient, for our purposes, to

define gauge-invariant operators to be bosonic when they
commute with all local gauge-invariant operators located at
different positions in space at the same time. While we
referred to local operators above, in a lattice theory, it is
natural to also consider bosonic operators B built from
multiple nearby lattice sites; e.g., the product of two free
fermions at adjacent sites may be considered a local
bosonic operator. In that case, we require it to commute

with all operators whose support does not contain the lattice
sites from which our operator B was built.
Combining the above definitions leads quickly to the

desired result. We begin by assuming the theory with local
kinematics to admit some limit where it is effectively
described by a gravitational theory with universal coupling
to energy. We take this to mean that notions of time
evolution embodied by the above two definitions coincide.
The time evolution of the local theory is then generated by a
Hamiltonian which, by Definition 1, can be written as an
integral over the boundary gravitational flux.
There is, in principle, some change of variables that

writes this boundary integral in terms of variables in the
original local theory. Since the gravitational flux is a
(gauge-invariant) bosonic observable at the boundary of
the gravity theory, we assume that the result in the
kinematically local theory is again the integral of a bosonic
gauge-invariant operator supported only on (or near) the
boundary. Failure of this property to hold would mean that
the two theories have radically different notions of bulk vs
boundary; we, therefore, refer to the above property as the
assumption that the two theories have compatible notions
of locality. But having expressed the Hamiltonian in terms
of boundary operators in the local theory, it must commute
with all local observables in the interior. So, interior local
observables must be time independent in the limit where
the effective gravitational description applies; i.e., the local
interior dynamics has become frozen. We restate this
conclusion as the following theorem.
Theorem I.—Consider any limit where the effective

description of a local theory is a gravitational theory with
universal coupling to energy, the same notion of time
evolution, and a compatible definition of locality. In this
limit, all local observables away from the boundary become
independent of time.
Discussion.—We have seen that all bulk dynamics must

freeze out in any limit where a kinematically local theory
develops an effective gravitational description (and where
this gravitational field couples universally to energy,
maintains the same notion of time evolution, and contains
a compatible definition of locality). We emphasize that only
the kinematics need be local for this conclusion to hold.
While our definition of kinematic locality requires
Hamiltonian evolution, the Hamiltonian may contain
instantaneous long-range interactions. The form of the
commutation relations is preserved by any unitary notion
of time evolution.
As remarked in the Introduction, there is no inherent

contradiction in this freeze out on its own. After all, gapped
theories are quite common. But an interesting effective
gravitational description should remain nontrivial in
the bulk of the spacetime, which then requires that its
notion of the bulk-boundary distinction be rather different
than that of the original kinematically local theory. This
constitutes a certain nonlocality intrinsic to the process of
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emergence—beyond any nonlocality already present in the
original dynamics—and is similar to what occurs in string
theoretic gauge-gravity duality (e.g., [43,44]). Indeed,
modulo anomalies, we may imagine discarding the original
bulk and obtaining the gravity theory directly from degrees
of freedom at the boundary.
Since partial motivation for this Letter came from the

(gravitational) Weinberg-Witten theorem [25], one may
recall that Weinberg-Witten has a useful analogue for U(1)
vector fields. The corresponding analogue of our result is
far less interesting. It states, simply, that all local operators
remaining in the limit where the effective U(1) vector
description applies must be uncharged.
Returning to the gravitational context, it is clear that the

consequences of our theorem can be avoided by introduc-
ing a priori kinematic nonlocalities violating our assump-
tions. The gauge-gravity dualities of string theory are
examples of this strategy. Indeed, any (Hamiltonian)
quantum theory of gravity defined on a separable Hilbert
space is completely equivalent to some local field theory—
and, in fact, to a quantum mechanical theory describing a
single particle in one dimension—via a sufficiently non-
local map. One simply uses the fact that all separable
Hilbert spaces are isomorphic to transcribe the Hamiltonian
to the Hilbert space of a single nonrelativistic particle. As a
0þ 1-dimensional field theory, the result trivially satisfies
Definition 2. The dynamics are also local in time, though
when written (perhaps only formally) in terms of the usual
position and momentum operators, the Hamiltonian need
not bear any resemblance to standard energy functions of
Newtonian mechanics.
Of course, the above procedure requires one to first know

the exact spectrum of the gravitational Hamiltonian. This is
tantamount to solving the theory; and any construction
which first requires the theory to be solved will be of very
limited use. Allowing the map between theories to be
arbitrary nonlocality, thus, seems unproductive. Again,
stringy gauge-gravity duality represents a sort of happy
medium with enough nonlocality to evade our theorem and
enough structure to remain useful.
One might also ask if gravity could be the effective

description (via a more local change of variables) of a
theory with some special type of kinematic nonlocality
over which one might hope to have more control.
Noncommutative gauge theories [61] are a natural first
category to consider. Since these theories lack local
observables, there is no immediate direct transcription to
this context of our theorem above; but closely related
reasoning indicates failure here as well. In particular, recall
that noncommutative gauge theories can be defined on
compact spaces with translational symmetry (e.g., tori)
where they continue to admit gauge-invariant observables
with nonzero momentum [62]. Recall, also, that, like
energy, momentum is a source for (other components of)
the gravitational field and admits a similar Gauss-law

expression as a boundary integral in standard gravitational
theories. This motivates a definition of “universal coupling
to momentum” in analogy with our Definition 1 above. In
theories with this property, the total momentum must
vanish on spatially compact manifolds, and operators with
nonzero momentum cannot be gauge invariant. However,
restricting the noncommutative theory to zero-momentum
operators is comparable to freezing out bulk degrees of
freedom in a local field theory [63], so this approach seems
similarly unproductive.
In closing, we remark that the momentum version of the

argument in the above paragraph also constrains the
emergence of Hořava-Lifshitz gravity [40], which couples
universally to momentum but not to energy (though, see
parenthetic note in the text). Again, this universal coupling
is an intrinsically nonlinear phenomenon. Thus, the lin-
earized theory is free to appear in an effective description as
found in [15,16,19,20].
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