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It has been conjectured that the velocity of sound in any medium is smaller than the velocity of light in
vacuum divided by

ffiffiffi
3

p
. Simple arguments support this bound in nonrelativistic and/or weakly coupled

theories. The bound has been demonstrated in several classes of strongly coupled theories with gravity
duals and is saturated only in conformal theories. We point out that the existence of neutron stars with
masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at
“low” densities is in strong tension with this bound.
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Introduction.—The nature of matter at high baryon
number density is one of the outstanding open problems
of nuclear and astrophysics. In principle, the properties
of matter at densities comparable to the nuclear saturation
density (n0 ≈ 0.16=fm3) are determined by QCD. In
practice, it has been very difficult to extract the QCD
predictions for dense matter except at extremely high
densities where asymptotic freedom allows for perturbative
calculations. The structure of large nuclei provides some
information about densities around the nuclear saturation
density. Above the nuclear saturation density, all known
theoretical methods break down: nuclear effective theories
break down due to the high Fermi momentum, and lattice
calculations are plagued by sign problems. The only
empirical evidence we have about matter at higher baryon
densities comes from the study of neutron stars which
contain matter up to 5–8 times the saturation density.
General relativity connects the equation of state of dense

matter with the relation between the radius and the mass of
neutron stars. Rotation, magnetic fields, and finite temper-
aturemake only small corrections to themass-radius relation.
Also,we assume, in this Letter, that the ground state ofmatter
at low densities is well described by laboratory nuclei.
Thus, the mass-radius relation is essentially unique, and
the measurement of radii and masses of several neutron stars
determines the equation of state at high energy density. For
each equation of state, there is a maximum mass beyond
which no stable configuration is possible, regardless of the
radius, since a more massive star would collapse into a black
hole. The higher the pressure for a given energy density, the
larger is the maximum supported (gravitational) mass. In the
last few years, two stars were observed with a mass around
two solar masses with very small error bars. One is a
millisecond pulsar in a binary system whose mass was
determined through Shapiro delay [1]; the other has a white

dwarf companion whose spectroscopy allowed a precise
determination of the neutron star mass [2]. These two
observations currently provide the strictest empirical con-
straints on the equation of state of dense matter.
One way of characterizing dense matter is through the

velocity of sound given by v2s ¼ dp=dϵ (We use a system
of units where ℏ ¼ c ¼ 1.), where p is the pressure and ϵ
the energy density (including the rest mass of the particles).
Causality implies an absolute bound vs ≤ 1 and thermo-
dynamic stability guarantees that v2s > 0. There are rea-
sons, however, to expect more stringent bounds applicable
to all, or, at least, a large class of materials [3].
Nonrelativistic models, at least in the range of densities
where they are applicable, predict, obviously, vs ≪ 1. On
the other extreme, we have gases composed of ultra-
relativistic (massless) particles where v2s ¼ 1=3. The inclu-
sion of a mass for the particles lowers the speed of sound to
v2s < 1=3. Interactions among the particles, if perturbative,
also lead to vs < 1=3. This is the case of QCD at
asymptotically high densities (or temperatures) where a
weak coupling expansion is valid. Thus, it is natural to
speculate that the speed of sound at intermediate densities
will interpolate between these two limits and stay at all
densities below the v2s ¼ 1=3 value, at least in asymptoti-
cally free theories like QCD. The alternative would be the
presence of a bump in the speed of sound at intermediate
densities before its value approaches v2s ¼ 1=3 from below,
asymptotically, implying the existence of a maximum and a
local minimum of vs as a function of μ.
There are other reasons, to believe that the v2s < 1=3

bound is valid, even in other theories besides QCD.
The value v2s ¼ 1=3 is common to all systems with
conformal symmetry, of which free massless gases are
just one example. In fact, the vanishing of the trace of the
momentum-energy tensor—the hallmark of conformal
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theories—implies that the energy density ϵ and the pressure
p are related by ϵ ¼ 3p and, consequently, that v2s ¼ 1=3,
even in the case of strongly interacting systems.
In order to find a violation of the speed of sound bound,

we should, then, look at strongly interacting relativistic
systems away from conformality. Strongly coupled theories
are difficult to analyze, but several calculations of the speed
of sound in several different models were performed in the
strong coupling limit using the AdS/CFT correspondence.
The speed of sound was computed at high temperatures in
the single scalar model [3,4], the Sakai-Sugimoto model [5]
(a close analogue to QCD), the D3=D7 system [6], and the
N ¼ 2� gauge theory [7], and, in all cases, the bound v2s <
1=3 is respected. The bound was also verified in theD3=D7
system at finite baryon and isospin chemical potential.
Each of these holographic models corresponds to a whole
family of four dimensional field theories. It is unclear,
however, how broad the set of theories covered by these
examples actually is.
Some additional insight into the physical origins of the

apparent v2s < 1=3 bound can be obtained writing the
(baryon number) density n as n ¼ NðμÞμ3=ð6π2Þ. For a
free ultrarelativistic fermionic gas,NðμÞ is independent of μ
and equal to the number of “degrees of freedom” of the
system (different species, polarizations, etc.). In general,
NðμÞ depends on μ, but we will still refer to NðμÞ as the
number of effective degrees of freedom relevant at chemical
potential μ. Simple thermodynamics arguments lead to the
relation v2s ¼ 1

3
½1þ μ

3
N0ðμÞ=NðμÞ�−1, so as long as the

number of effective degrees of freedom increases with μ
(and the density), the velocity bound is valid. A similar
argument can be made for the finite temperature case by
substituting μ and nðμÞ by the temperature T and the
entropy density sðTÞ. In finite temperature QCD, the
degrees of freedom at small temperatures are the pions
and, at high temperatures, the much more numerous gluons
and quarks. Lattice QCD calculations show that NðTÞ is,
indeed, a monotonically increasing function of T [8], and
the bound v2s < 1=3 is valid. It is much less clear whether
a similar thing happens at finite chemical potential.
Some arguments [9] suggest that the related quantity
~NðTÞ ¼ −fðTÞ=T4, where fðTÞ is the free energy density,
is an increasing function of T in asymptotically free
theories, a result similar in spirit to the “a theorem” [10]
valid for all local, unitary field theories.
There are counterexamples to the bound v2s < 1=3.

Nonrelativistic models lead to v2s > 1=3, and even
v2s > 1, at high densities where they are not applicable. The
well-known counterexample of Zeldovich [11] relies on
semiclassical arguments, mean field approximations, and the
neglect of retardation effects. Perhaps a better counterexam-
ple is the case of QCD with an isospin chemical potential μI
larger than the pion mass but smaller than QCD scales. The
isospin chemical potential drives the formation of a pion
condensate (one also has to assume that electromagnetism is

“turned off” to allow for charged pion condensation), and the
energy density oscillations on top of the condensate violates
the velocity bound, as a simple chiral perturbation theory
calculation shows [12]. Notice that, in this case, the medium
is comprised of a condensate of bosons, and there is no net
baryon number, a situation physically very different to the
finite density of the baryon number we are interested in.
The purpose of this Letter is to demonstrate that there is

an acute tension between the v2s < 1=3 conjecture and the
existence of neutron stars with masses M ≈ 2M⊙ for all
reasonable low density equations of state. This tension, for
two equations of state, was already observed in [13] (see,
also, related earlier work in Refs. [14–16]). Assuming the
validity of the sound speed bound, the properties of
strongly interacting matter at low density are known well
enough to put a bound on the largest star mass achievable.
Because the equation of state is very constrained up to
baryon number densities about 2n0, the increase of the
pressure with the density is limited by the assumption
v2s ¼ dp=dϵ < 1=3. In this case, the equation of state with
the largest maximum mass is that with the largest pressure
above 2n0 [17,18]. As a consequence, there is a bound on
the largest neutron star mass consistent with fairly well
established facts about the low density behavior of mass
and the bound v2s < 1=3. The remainder of this Letter will
demonstrate that the numerical value of this bound is near
2M⊙ and will quantify the uncertainties.
The equation of state for n < 2n0.—For densities below

2n0, a nonrelativistic model of nucleons interacting through
a (possibly momentum-dependent) potential is adequate.
The interactions of the nucleons in the relevant energy
regime are well known experimentally and are well fit by
several potential models. Modern Monte Carlo methods are
capable of using those to determine the spectrum of light
nuclei and bulk matter with negligible numerical error. The
hierarchy observed between two- and three-body forces,
as well as different components of the three-body force,
follow the expectation of effective theory power counting
arguments (for a review, see, for instance, Ref. [19]).
The two-body force obtained from the chiral low

momentum expansion fits the scattering data very well.
Many-body calculations using the two-and three-body
forces up to next-to-next-to-leading order in the low
momentum expansion were argued to be perturbative in
[20] and the neutron matter equation of state computed in
[21,22]. Similarly, the equation of state of pure neutron
matter with the AV80 two-body force (which fits all s-and
p-wave phase shifts up to energies in excess of the ones
found in back-to-back scattering of neutrons on the Fermi
surface at n ¼ 2n0) and a variety of three-nucleon forces fit
to reproduce the binding energy of nuclear matter was
computed in Refs. [23–25] with a numerical error smaller
than 2%. The different three-body forces lead to different
equations of state at high densities, but, up to densities
n < 2n0, their effect is modest. We can see, in Ref. [23],

PRL 114, 031103 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

23 JANUARY 2015

031103-2



that the difference in the energy per neutron at n ¼ 2n0
between two extreme models (no three-body force and the
strongly repulsive Urbana IX three-body force) is about
2 MeV (when the three-body forces are tuned so the
binding energy of nuclear matter at saturation is fixed) to
12 MeV (when the three-body forces change to cover the
range of empirically allowed values of nuclear binding).
This is to be compared to the total energy per neutron
which is dominated by the rest massMN ¼ 939 MeV. This
approach gives, for densities n < 2n0, very similar results,
and with similar uncertainties, to the one in Refs. [21,22].
In a real star, the weak interactions allow for the β decay

of neutrons into protons and a small proton fraction,
x ¼ nP=n < 6%, is expected. In order to incorporate this
information into the small extrapolation from neutron
matter (with x ¼ 0) to β-equilibrated matter, we use the
Skyrme-like parametrization [22,26]

ϵðn; xÞ
n0

¼ ð1 − xÞMN þ xMP

þ 3T0

5
½x5=3 þ ð1 − xÞ5=3�

�
2n
n0

�
2=3

− T0½ð2α − 4αLÞxð1 − xÞ þ αL�
n
n0

þ T0½ð2η − 4ηLÞxð1 − xÞ þ ηL�
�
n
n0

�
γ

; ð1Þ

with T0 ¼ ð3π2n0=2Þ2=3=2MN . When reduced to pure
neutron matter (x ¼ 0), Eq. (1) fits the results of
Refs. [21–25] very well, and it is a convenient manner
in which to parametrize them. Choosing the parametriza-
tion of Ref. [23] would give similar results to those we
report.
The five parameters α; αL; η; ηL, and γ can be determined

by the empirical knowledge of five quantities

−B ¼ ϵðn0; 1=2Þ
n0

−MN þMP

2
;

p ¼ n2
∂ðϵ=nÞ
∂n

����
n¼n0;x¼1=2

¼ 0;

K ¼ 9n20
∂2ðϵ=nÞ
∂n2

����
n¼n0;x¼1=2

;

S ¼ 1

8n0

∂2ϵ

∂x2
����
n¼n0;x¼1=2

;

L ¼ 3n0
8

∂3ðϵ=nÞ
∂n∂x2

����
n¼n0;x¼1=2

: ð2Þ

The analysis of nuclear masses predicts B ¼ 16�
0.1 MeV and n0 ¼ 0.16� 0.01 fm−3 [27], and the study
of giant resonances implies K ¼ 235� 25 MeV for the
nuclear incompressibility. Finally, a wide range of exper-
imental data from nuclear masses, dipole polarizabilities,

and giant resonances implies S ¼ 32� 2 MeV for the
symmetry energy and L ¼ 50� 15 MeV (see [28,29]
and references therein). Given values of B, n0, and K,
one can determine α, η, and γ, and then S and L can be used
to obtain αL and ηL. After a set of parameters is chosen,
the β-equilibrated state is found by minimizing ϵðn; xÞ in
relation to x for any given value of n. At the highest density
considered, and for all parameters used, x < 6%, confirm-
ing that only a slight extrapolation for the pure neutron
case is necessary.
Bound on neutron star masses.—We will now determine

the highest neutron mass achievable assuming the validity
of the bound v2s < 1=3 and the knowledge on the low
density equation of state discussed in the previous section.
Within the set of equations of state satisfying the low
density and the v2s < 1=3 constraints, the equation of state
with the largest pressure is given by

ϵðpÞ ¼
�
minxϵ(nðpÞ; x); n < 2n0
minxϵð2n0; xÞ þ 3p; n > 2n0

: ð3Þ

To reflect our uncertainty of the low density equation of
state, we choose the parameters α; αL; η; ηL, and γ in Eq. (1)
by selecting values for K; S, and L at random with a
Gaussian distribution centered around their empirical
central values and standard deviation given by uncertainty
of their empirical determination. Note that increasing the
transition density (2n0) would require massive stars to have
a larger sound speed, and lowering it significantly would
conflict microscopic calculations of the equation of state.
The small uncertainties in B and n0 do not affect our results.
Notice that each of these equations of state are not meant to
be realistic at high densities; they are continuous, but the
speed of sound has a sudden jump at n ¼ 2n0. Rather, they
provide an upper bound on the pressure for each value of
the pressure and, by the result in Ref. [17], an upper bound
on the maximum mass of the star. For each of these
equations of state (namely, for each value of α; αL; η; ηL,
and γ) the Tollman-Oppenheimer-Volkov equations,
describing the structure of a spherically symmetric star,
is solved and the maximum mass allowed is determined.
The result is shown in the histogram in Fig. 1.

1.6 1.7 1.8 1.9 2.0 2.1 2.2
0

100

200

300

400

500

N
um

be
r

of
m

od
el

s

Mmax (M )

FIG. 1. Histogram of the number of models as a function of the
maximum mass supported.
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The most important feature of Fig. 1, and the main point
of this Letter, is the abrupt disappearance of viable models
at masses larger than about 2M⊙. We will refrain from
identifying the number of models capable of sustaining
masses above 2M⊙ to a probability as the error bars in the
input parameters of the low density equation of state are
dominated by systematic errors. Still, Fig. 1 makes clear
that the v2s < 1=3 bound is in strong tension with known
empirical facts. This conclusion is even more believable if
one notices that we have intentionally left out phenomena
—like the appearance of hyperons and other degrees of
freedom—that would further decrease the pressure but that
are less certain and harder to quantify. Also, since our
purpose was to establish an upper bound on the maximum
mass, we used equations of state where the speed of sound
changes suddenly from its value at n ¼ 2n0 to v2s ¼ 1=3.
A smoother, more realistic transition would further reduce
the maximum mass.
The observation of neutron stars with small radii tends to

strengthen the argument that the velocity bound must be
violated. The correlation between the radius of a 1.0 M⊙
neutron star and the maximum mass is displayed in Fig. 2.
The observation of a 1.0 M⊙ neutron star with a radius
smaller than 13 km, or the observation of any neutron star
with a radius less than 11.8 km, means that the velocity
bound must be violated. In particular, the neutron star in the
globular cluster NGC 6397 already suggests that the velocity
bound must be violated, but there are several systematic
uncertainties which make this connection less clear [30,31].
If the bound on the speed of sound is actually violated—

as is strongly suggested by our results—the speed of sound,

as a function of the energy density, has a peculiar shape.
It raises from small values, reaches a maximum with
v2s > 1=3, lowers to a local minimum with v2s < 1=3,
and then raises again, approaching v2s ¼ 1=3 from below
at high densities. We find it remarkable that such a
conclusion can be derived from well established facts.
There is, however, another way of looking at our result.

If a proof of the speed of sound bound is obtained, either by
adapting the arguments in Refs. [9,10] or by other means,
our results imply that the equation of state of QCD at finite
density would essentially be known up to several times
nuclear saturation densities, as only models that, at low
density, are the hardest allowed by empirical evidence and
rapidly transition to one with v2s ¼ 1=3 can support stars as
heavy as two solar masses. Of course, the determination of
the equation of state within such a narrow range has been a
“holy grail” of nuclear and astrophysics since the discovery
of pulsars. In addition, such a result would imply that other
degrees of freedom, like Λ hyperons, cannot appear in
neutron stars in any significant numbers, which requires
strong repulsion between Λ and neutrons [32]. We would
also know that neutron stars have radii on the upper range
of the current estimates with important consequences for
the detection of gravitational waves generated in neutron
star collisions [33]. The importance of all these questions
seems to warrant further field theoretical studies on the
status of the speed of sound bound. Hopefully the present
Letter, by pointing out the phenomenological consequences
that such a proof would have, will spark an interest in this
question.
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