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Magnetization processes of spin-1=2 layered triangular-lattice antiferromagnets (TLAFs) under a
magnetic fieldH are studied by means of a numerical cluster mean-field method with a scaling scheme. We
find that small antiferromagnetic couplings between the layers give rise to several types of extra quantum
phase transitions among different high-field coplanar phases. Especially, a field-induced first-order
transition is found to occur at H ≈ 0.7Hs, where Hs is the saturation field, as another common quantum
effect of ideal TLAFs in addition to the well-established one-third plateau. Our microscopic model
calculation with appropriate parameters shows excellent agreement with experiments on Ba3CoSb2O9

[T. Susuki et al., Phys. Rev. Lett. 110, 267201 (2013)]. Given this fact, we suggest that the Co2þ-based
compounds may allow for quantum simulations of intriguing properties of this simple frustrated model,
such as quantum criticality and supersolid states.
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A well-controlled quantum system is capable of effi-
ciently simulating other quantum systems exhibiting in-
triguing physical properties that are less understood due to
the lack of precise control or direct access in the laboratory.
Thirty years after Feynman’s proposal [1], this idea of
“quantum simulation” is becoming a reality with the use of
cold atoms [2,3], trapped ions [4,5], quantum dots [6,7],
superconducting circuits [8], etc. The potential applications
widely range from condensed-matter physics (e.g., high-Tc
superconductivity) to high-energy physics, quantum chem-
istry, and cosmology [9]. In the recent years, it has been
also proposed to use magnetic insulators as a quantum
simulator for, e.g., quantum criticality [10], Tomonaga-
Luttinger liquid [11,12], Bose glass [13,14], the Higgs
mode [15], and the Efimov effect [16], taking advantage
of controllability of the relevant parameters by pressure or
magnetic fields.Triangular-lattice antiferromagnets (TLAFs)
are a promising playground for studying topological phase
transitions [17,18], supersolids [19,20], and the physics
of frustration, and for testing numerical methods for two-
dimensional (2D) systems with the minus-sign problem
[21]. Of particular importance upon the simulation is
that the experimental system can be well described by a
simple model Hamiltonian. A major problem with TLAFs
had been the absence of such ideal compounds that can
be compared with the model calculations at a quantita-
tive level.
Recently, the appearance of new TLAF materials com-

prising magnetic Co2þ ions [22–27] has changed the
situation. Shirata et al. [22] reported that the magnetization

curve of Ba3CoSb2O9 powder seems to show excellent
agreement with theoretical calculations on the spin-1=2
Heisenberg model [28–31], including the one-third quan-
tum magnetization plateau [32–34]. This is owing to the
fact that the Co2þ ions with an effective spin-1=2 form
well-separated layers of regular triangular lattice [22].
However, even in the almost ideal TLAF, the latest experi-
ments with single crystals [24,25] found an unpredicted
magnetization anomaly at a strong magnetic field H ≈
0.7Hs with Hs being the saturation field. In other TLAFs
with small spins, such as Cs2CuBr4 [35], Ba3NiNb2O9

[36], and Ba3CoNb2O9 [26], the experiments have also
found a sign of extra quantum spin states at strong magnetic
fields. Although mechanisms for the high-field quantum
states are now under active discussion [20,24,25,37–39],
a conclusive interpretation has not been reached due to
the lack of direct comparison with the corresponding
microscopic model.
In this Letter, we treat a microscopic model of layered

TLAFs with the use of a numerical cluster mean-field
method with a scaling scheme (CMFþ S) [20,40–43].
We quantitatively compare the model calculations with
the experiments to provide a microscopic mechanism
for the extra high-field quantum states. As shown in
Fig. 1(a), the magnetization process of purely 2D
TLAFs exhibits three different magnetic phases up to the
saturation field Hs with or without easy-plane anisotropy,
0 ≤ Jz=J ≤ 1. We find that the presence of an antiferro-
magnetic interlayer coupling J0 gives rise to several high-
field quantum states shown in Fig. 1(b). As a result,
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additional quantum phase transitions between them occur
at strong fields even if J0 is infinitesimally small. Below,
we show the mechanism for the appearance of the high-
field states due to quantum fluctuations and the incompat-
ibility between three-sublattice in-plane magnetic orders
and the demand of antiparallel alignment along the stacking
direction. Moreover, we explain the entire magnetization
process of Ba3CoSb2O9 including the high-field magneti-
zation anomaly in terms of the microscopic model in a
quantitative way. The microscopic understanding of the
system constitutes a solid foundation for application of
Ba3CoSb2O9 as a quantum simulator of TLAF.
We describe a spin-1=2 layered TLAF with the following

model Hamiltonian:

Ĥ ¼
X

hi;ji
½JðŜxi Ŝxj þ Ŝyi Ŝ

y
jÞ þ JzŜ

z
i Ŝ

z
j�

þ J0
X

hi;li0
Ŝi · Ŝl −H

X

i

Ŝxi ; ð1Þ

where the intralayer (J; Jz) and interlayer (J0) nearest-
neighbor couplings are assumed to be all antiferromagnetic
(positive). As well as the isotropic case (J ¼ Jz), we
consider possible easy-plane anisotropy 0 ≤ Jz=J < 1 for
the intralayer interactions, which is relevant to many real
materials. The easy-plane anisotropic system in Eq. (1)
with the in-plane magnetic field H does not preserve total
spins in any direction, which makes the theoretical treat-
ment more challenging. Moreover, the classical limit
(S → ∞) with J0 ¼ 0 exhibits a nontrivial continuous
degeneracy of ground states [44,45] due to strong frus-
tration. Thus, quantum fluctuations play an essential role in
determining the ground-state magnetic ordering as long as
the degeneracy lifting term J0 is relatively small.
To deal with the quantum effects microscopically, we

perform the CMFþ S calculations [20,40–43]. Under
the 3 × 2 ¼ 6 sublattice ansatz, the magnetic moment
mα

μ ¼ hŜαμi (μ ¼ fA;B;C; A0; B0; C0g) is self-consistently

determined by diagonalizing the Hamiltonian on a cluster
of NC spins at zero temperature (see Fig. 2) [46]. This
approach reproduces the classical ground state for NC ¼ 1,
and allows for a systematic inclusion of nonlocal fluctua-
tions as NC increases. We first discuss the microscopic
mechanism for the magnetization process of the model (1)
with the minimal NC ¼ 3 cluster, and eventually make an
extrapolation to the limit of NC → ∞, where long-range
fluctuations in each layer are fully included. The scaling
parameter λ≡ NB=3NC (NB is the number of bonds treated
exactly) varies from 0 for NC ¼ 1 to 1 for NC ¼ ∞. The
data for each NC > 3 and technical details are presented
in the Supplemental Material [46].
Figure 3 shows the NC ¼ 3 result for the energies of

candidate magnetization processes of an isotropic 2D
system (J ¼ Jz and J0 ¼ 0). We introduce the parameter
ϕ≡6Arg½my

Aþmy
Be

i2π=3þmy
Ce

i4π=3� (−π < ϕ ≤ π), which
takes value 0 for the 0-coplanar state (also called the V
state) and π for the Y state and the π-coplanar state
(also called the Ψ state [38] or the inverted-Y state). The
quantum effects [33] select the sequence of the Y,
up-up-down, and 0-coplanar states for the ground state
below Hs ¼ 9J=2 [28–31]. The purely 2D model appears
to be a good approximation for TLAFs with well-separated
magnetic layers [22–25]. However, we will show that even

(a) (b)

FIG. 1 (color online). (a) Ground-state phase diagram of spin-
1=2 easy-plane TLAFs on an independent layer with in-plane
magnetic field, obtained by the CMFþ S. (b) Emergent high-
field states induced by interlayer coupling J0 for Jz=J ¼ 0.8. The
thick (thin) curves denote first- (second-) order transitions.

(a) (b)

FIG. 2. (a) Six-sublattice structure and the cluster decoupling
with NC ¼ 6. (b) Series of clusters used in the CMFþ S.

FIG. 3. Energy per site of candidate magnetic orders measured
from that of the π-coplanar state for J ¼ Jz and J0 ¼ 0 within the
NC ¼ 3 approximation. The lower illustrations depict the spin
configurations on an elementary triangle ABC.
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quite a small interlayer coupling can give rise to another
quantum phase transition that is absent in the 2D model.
Figure 4 shows the ground-state selection when an

interlayer coupling J0 ¼ 0.025J exists. The saturation
field is now given by Hs ¼ 9J=2þ 2J0. We see that
the sequence of the Y, up-up-down, and 0-coplanar
states is separated into two branches, (a)-(b)-(c)-(d) and
(a0)-(b0)-(c0). At 0.3≲H=Hs ≲ 0.4, the stacked up-up-
down structure of (b) has the lowest energy. Since
J0 > 0, the spins tend to align antiparallel with their
neighbors in the stacking direction. However, this demand
cannot be completely fulfilled for the three-sublattice up-
up-down structure in contrast to the standard Néel ordering
on layered bipartite lattices. Whereas the first two pairs of
spins connected by J0 can align antiparallel in a unit prism
ABC − A0B0C0, the third one has to be oriented in the same
direction. When one increases H, the configuration (b) is
transformed into a stacked coplanar state (c). The geometric
incompatibility also inhibits simple stacking of stable
0-coplanar order, and the spins have to form an inter-
mediate 0 < jϕj < π coplanar order identified by three
angles θ, χ, and ψ . AsH increases, the difference between θ
and χ becomes larger, and the state (c) eventually merges
with the alternately stacked π-coplanar state (d) at a certain
magnetic field (≈0.8Hs).
The branch of (a0)-(b0)-(c0) has higher energy at low

magnetic fields since the uniformly stacked up-up-down
structure of (b0) is disfavored by antiferromagnetic J0.

However, the configuration (b0) is connected to a simple
alternately stacked 0-coplanar state (c0), which can reduce
the interlayer bond energy of field-transverse spin compo-
nents. Therefore, as can be seen near the saturation field of
Fig. 4, the energy of the state (c0) becomes lower than that
of (d). This is consistent with the expectation from the
purely 2D result in Fig. 3, where the 0-coplanar order is
more favored by quantum fluctuations than the π-coplanar
order. Consequently, the two energy curves must cross; i.e.,
an additional first-order transition occurs at some point
between the end of the stacked up-up-down state and the
saturation field. Indeed, one can see in Fig. 4 that the
ground-state magnetization process for very weak J0 > 0 is
given as (a)-(b)-(c)-(c0).
To make a quantitative comparison with experiments,

we take into account longer-range spin flactuations and
easy-plane anisotropy. In Fig. 1, we already showed the
numerical CMFþ S (NC → ∞) results. Figure 1(a) shows
that any extra phase transition is induced only by easy-
plane anisotropy in two dimensions. For Jz=J ≠ 1, the U(1)
symmetry with respect to the x axis is absent, and the
transition from the saturated to 0-coplanar state at H ¼ Hs

is accompanied by the spontaneous breaking of Z6 sym-
metry under permutation of sublattices and π spin rotation
about the magnetic field direction [33]. Moreover, since the
total spin is no longer a good quantum number, the value of
Hs is reduced from the classical one 9J=2þ 2J0 and the
magnetization plateaus at M ≈ 1=6 and M ≈ 1=2 have a
slight but finite positive slope.
Figure 1(b) shows the high-field quantum states induced

by interlayer coupling J0 > 0. In the quasi-2D regime
(0 < J0 ≲ 0.1J), the first-order transition between the
coplanar states with 0 < jϕj < π and ϕ ¼ 0 occurs (due
to the mechanism we already explained). The first-order
transition takes place atH ≈ 0.7Hs almost independently of
the values of 0 < J0=J ≲ 0.1 and Jz=J [see also Fig. 5(a)],
which thus can be regarded as a common quantum effect
in ideal TLAF compounds, given the unavoidable three
dimensionality. For J0 ≳ 0.25J, the second-order transition
between the 0 < jϕj < π and ϕ ¼ π coplanar states takes
place; i.e., the branch of (a)-(b)-(c)-(d) has the lowest
energy up to the saturation field. In the intermediate region,
0.1J ≲ J0 ≲ 0.25J, the magnetization process follows
(a)-(b)-(c)-(c0)-(d) with two first-order transitions. Note
that the present CMFþ S study based on 2D clusters is
more reliable for smaller J0=J.
Finally, we present an application to the spin-1=2 easy-

plane TLAF Ba3CoSb2O9 [22–25]. Although the magneti-
zation process exhibits a considerable dependence on the
magnetic field direction, the fitting of the resonance
conditions with a semiclassical prediction suggests that
the exchange anisotropy is very small [24]. Nonetheless,
the numerical quantum phase diagram shows that the
absence of one-third plateau for H∥c [24,25] cannot be
explained with such a small anisotropy [20,39]. This

FIG. 4 (color online). Energy per site of candidate magnetic
orders measured from that of the configuration (d) for J ¼ Jz and
J0 ¼ 0.025J within theNC ¼ 3 approximation. The arrow locates
a first-order transition that is absent in the 2D result. The inset
shows an enlarged view of the high-field region. The lower
illustrations depict the spin configurations on an elementary
triangular prism ABC − A0B0C0.

PRL 114, 027201 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

16 JANUARY 2015

027201-3



indicates the importance of taking quantum effects into
consideration when determining the model parameters.
Here, we use the value of Jz=J ¼ 0.8 (≈1=1.3) according
to Ref. [20]. This compound has a well-separated layered
structure, and the magnetization curve shows a single
unexpected anomaly at a strong in-plane field H∥ab.
Thus, the interlayer coupling J0 should be very weak, at
most ∼0.1J from Fig. 1(b).
In Fig. 5(b), we show the comparison of the CMFþ S

magnetization curve MðHÞ≡P
μm

x
μ=6 at Jz=J ¼ 0.8 and

J0=J ¼ 0.025 with the experimental data of Ba3CoSb2O9

[24]. The model calculation and experiment show excellent
agreement including the nonlinear bending of the curve, the
width of the plateau, and the anomaly at H ≈ 0.7Hs,
although the plateau and anomaly are slightly smeared
in the experimental data at low but finite temperatures.
Especially, we find a good correspondence between the
observed anomaly and the point at which JdM=dH exhibits
a divergence associated with a small jump in M at the
first-order transition between the states (c) and (c0). This
strongly suggests that the compound Ba3CoSb2O9 can
be well described by the simple microscopic model of
Eq. (1), allowing for the use of Ba3CoSb2O9 as a quantum
simulator of TLAF.
Regarding the origin of the high-field magnetization

anomaly in Ba3CoSb2O9, several conjectures have been
proposed very recently. (i) The authors of the first exper-
imental study [24] naively expected that the transition to
the π-coplanar state occurred. According to Fig. 1(b), this
may take place only for J0 ≳ 0.25J. (ii) Maryasin and
Zhitomirski [37] also proposed that nonmagnetic impurities
could stabilize a fanlike (π-coplanar) spin order. (iii) The
spins aligning along the field-transverse direction on one

sublattice might cause a peak in the susceptibility [39].
(iv) An effective classical model with phenomenological
biquadratic coupling predicted the occurrence of a tran-
sition between two different “V-like” states [25], which are
equivalent to the (c) and (c0) states. The present micro-
scopic study supports the phenomenological conjecture
(iv) in the quasi-2D regime J0 ≲ 0.1J.
We suggest to use the Ba3CoSb2O9 quantum simulator

of TLAF for investigating quantum criticality that has not
been analyzable with unbiased numerical methods due
to the geometrical frustration. Of particular interest is the
transition from saturated to 0-coplanar states at H ¼ Hs,
with which the Z6 symmetry breaking is associated. The
dynamical exponent for this transition is z ¼ 1 because the
excitation spectrum at the transition point exhibits a gapless
and linear dispersion [46]. Hence, it is expected that this
transition belongs to the same universality class as the
one of the ordering transition of the (Dþ 1)-dimensional
six-state clock model, which is known to be the (Dþ 1)-
dimensional XY universality class [48–50]. Since critical
behaviors of the transition temperature Tc to disordered
phases are often measured in experiments to identify the
universality class [10], we here describe that of the present
case as Tc ∝ jH −Hsjφ. For the (Dþ 1)-dimensional XY
universality class, φ ¼ zν below the upper critical dimen-
sion Dc ¼ 3 [51], where ν is the critical exponent for the
correlation length. When H is so close to Hs that Tc ≲ 2J0,
the interlayer coupling is relevant and the transition nature
is three-dimensional (D ¼ 3). In this case, φ ¼ 1=2 [52].
In contrast, when Tc ≳ 2J0, thermal fluctuations decouple
the layers such that the transition is two-dimensional and
φ ¼ 0.6717ð1Þ [53].
In conclusion, we have studied the magnetization proc-

ess of spin-1=2 layered TLAFs, motivated by the recent
observations of high-field quantum states [24–26,35,36].
It was shown that even a small antiferromagnetic coupling
between the layers can change the nature of the ground
state, giving rise to additional quantum phase transitions at
a strong field above the one-third magnetization plateau.
Our microscopic model with the CMFþ S approach
provides a quantitative agreement with the magnetization
process of quasi-2D TLAFs [24,25], and properly explains
the observed magnetization anomaly as a first-order tran-
sition between different high-field quantum states. Thanks
to its quantitative correspondence to the microscopic
model, the system of Ba3CoSb2O9 may be used for
quantum simulations of important properties of TLAF,
such as quantum criticality and supersolid phases
[19,20,54–56].

We acknowledge the authors of Ref. [24] for sending
their experimental data in numerical form. We also thank
Hidekazu Tanaka and Yoshitomo Kamiya for useful dis-
cussions. This work was supported by KAKENHI Grants
from JSPS No. 25800228 (I. D.), No. 25220711 (I. D.), and
No. 26800200 (D. Y.).

(a) (b)

FIG. 5 (color online). (a) Ground-state phase diagram for
J0 ¼ 0.025J and NC → ∞. The thick (thin) curves denote
first- (second-) order transitions. (b) The magnetization curve
M and its field derivative JdM=dH for J0 ¼ 0.025J and
Jz=J ¼ 0.8. The CMFþ S at zero temperature is compared to
the classical-spin analysis and the experimental data of
Ba3CoSb2O9 forH∥ab at T ¼ 1.3 K ≈ 0.07J [24,47]. The values
of the saturation field and the saturation magnetization are
adjusted.
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