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Analysis of the spatial dependence of current-voltage characteristics obtained from scanning tunneling
microscopy experiments indicates that the charge density wave (CDW) occurring in NbSe2 is subject to
locally strong pinning by a non-negligible density of defects, but that on the length scales accessible in this
experiment the material is in a “Bragg glass” phase where dislocations and antidislocations occur in bound
pairs and free dislocations are not observed. An analysis based on a Landau theory is presented showing
how a strong local modulation may produce only a weak long range effect on the CDW phase.
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The effect of disorder on the properties of condensed
matter systems is important both in terms of fundamental
physics and of technological applications. In charge density
wave (CDW) systems, randomly positioned impurities
provide a random field that couples linearly to the order
parameter [1]. Theory dating back to the 1970s indicates
that if the impurity potential is strong enough, the random
field destroys the charge density wave completely, leading
to a phase with exponentially decaying correlations
and a correlation length of the order of the mean distance
between impurities [2,3]. Subsequent work revised this
picture, showing that in spatial dimensions d ¼ 3, weak
impurity pinning may lead instead to a topologically
ordered “Bragg glass” phase with power-law density
correlations [4–12].
While the physics of random field systems has been of

intense theoretical interest, experimental information has
mainly come from transport and scattering measurements
that average over large sample volumes [1,13–17]. An
important exception is the flux lattice decoration experi-
ments that provided important early support to the Bragg
glass picture for vortices in superconductors [18,19]. The
development of stable scanning tunneling spectroscopy
techniques that provide atomic-resolution imaging of local
electronic density over wide fields of view has opened up
new avenues for investigation of fundamental electronic
physics, in particular providing real-space information on
the effects of disorder on electronically ordered states
[20,21]. In this Letter, we present an analysis of scanning
tunneling spectroscopy measurements carried out on
NbSe2, a representative charge density wave system. The
analysis motivates a Landau theory that provides insights
into the effects of strong pinning in charge density wave
systems.
NbSe2 is a quasi-two-dimensional material. Its unit cell

consists of two blocks of Se-Nb-Se layers; the Nb atoms in
each layer form a triangular lattice and the electrical
conductivity is strongly anisotropic, being much larger

for in-plane currents than for currents flowing
perpendicular to the layers [22]. Scattering measurements
[23] indicate that a second order phase transition occurs at
Tc ≈ 34 K; below this temperature a charge density wave
forms. The charge density wave involves condensation of

electronic density at three wave vectors ~Qi¼1;2;3 related by

120° rotations. j ~Qij ≈ ~Gi=3 ≈ 0.7 Å−1 with ~Gi the smallest
nonzero reciprocal lattice vectors. We may write the
modulation of the electron density δρ in the charge density
wave phase as

δρðxÞ ¼
X3
i¼1

Reðψ ið~xÞei ~Qi·~xÞ: ð1Þ

The CDW order parameters ψ i are complex numbers that
may be written in terms of a real magnitude ηi and a phase
ϕi. Deviations from perfect charge density wave order
involve spatial variations of η and ϕ.
We use the scanning tunneling microscopy (STM) data

shown in Fig. 1 to obtain real-space information about the
spatial dependence of the amplitude ηðxÞ and phase ϕðxÞ.
The sample used here is the one described in Ref. [24], and
is made by vapor transport. The cleaved surface is believed
to be a Se layer, since a Se-Se bond is van der Waals, while
a Se-Nb bond is Coulombic. Figure 1(a) shows the
scanning tunneling spectroscopy topographic image of
the cleaved surface at 22 K < Tc ¼ 34 K. The voltage
and current are fixed to be −100 mV and 20 pA, respec-
tively. The measured signal is the vertical displacement of
the STM tip; this depends on the physical topography and
on the near Fermi-level electronic density of states at the tip
position. The large number of lighter white spots form an
approximately triangular lattice with the mean lattice
constant λ ∼ 1 nm about 3 times the basic lattice constant,
consistent with the CDW wave vector found in scattering
measurements [23]. We therefore believe that these are
local maxima in δρ arising from CDW formation. The small
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number of heavy white spots indicate impurities. There are
about 40 impurities in this field of view, which contains
∼103 CDW unit cells; in other words, the impurity density
nimp ≃ 0.4%. The CDW coherence length ξ0 is roughly of
the order of the CDW period ∼1 nm, since the phonon
softening occurs over the wide range of the Brillouin zone
[25,26]. Thus, we assume that the interimpurity distance
l ∼ 5 nm is much greater than ξ0. The signal associated
with impurities may come either from a physical change in
surface height (associated, e.g., with an impurity in the Se
layer) or from a change in the local density of states.
However, one may see that in almost all cases the impurity
sits in the center of a hexagon of CDW maxima and has a
triangular shape of size ≲1 nm consistent with interference
of three CDWwave vectors. This suggests that a significant
contribution of the impurity signal arises from impurity-
induced modulations of the density of states, and that in
particular impurities lead to an increase in the local density
of states, which acts as a strong pinning center fixing the
local CDW maximum to the impurity site. More detailed
discussions about pinning are given in the Supplemental
Material [27].
Figure 2 presents the autocorrelation of the experimental

signal, interpreted as a density of states modulation. We
present both the density modulation relative to the average
value δρ and the absolute value or amplitude η (the
Supplemental Material [27] explains how the correlation
functions are defined and computed). The amplitude
autocorrelation exhibits only a small decrease from the
value for perfect order (¼ 1). The autocorrelation of the
total CDW modulation δρ decays exponentially with a

decay length ∼4 nm comparable to the interimpurity
spacing l ≈ 5 nm. Taken together, these facts indicate that
the main effect of the impurity is on the phase of the CDW
order parameter.
While all impurities produce a local maximum in the

amplitude of the order parameter, different impurities have
different consequences for the phase, shown in Fig. 1(c).
The main panel shows the phase field corresponding to one
component of the CDW.We Fourier transformed the data in
Fig. 1(a), and filtered it by retaining only the Fourier
component near the six CDW peaks (see the Supplemental
Material [27] for details). The two insets show expanded
views of the phase near impurity sites. The right inset

FIG. 1 (color online). (a) A topographic image of a∼32 nm × 32 nm region of NbSe2 at 22 K < Tc ¼ 34 K taken under conditions of
constant sample-tip current and bias voltage. The heavy white spots are the strong pinning centers. (b) Delaunay analysis of the image.
Diamonds (squares) represent CDW maxima with more (fewer) than six edges. Impurity locations are indicated by the circles. Thick
broken lines that do not close indicate that some impurities create dislocations. Larger sized thick solid loops indicate that on larger
length scales there are no free dislocations. (c) Main panel is the phase configuration of the phase ϕ1 of one of the CDW components
displayed over the same field of view as shown in (a) and (b). The right inset shows a typical smooth modulation near an impurity. The
left inset shows a typical vortex-antivortex pair near an impurity. X’s are the locations of impurities. The lower panels of the insets are the
phase profile along the dotted line.
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FIG. 2 (color online). Autocorrelations of the CDW component
δρ parallel to and perpendicular to a CDWwave vector ~Q1, and of
the amplitudes η.
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shows an impurity that induces a smooth and small phase
modulation. The left inset shows that a different impurity
induces a large phase modulation from −π to π as we move
in a counterclockwise fashion around the defect. Only
∼20% of the identifiable defects produce 2π phase mod-
ulations (vortices); the remainder produce smoothly vary-
ing modulations of the phase. The theoretical analysis
presented below suggests that phase slips occur near
defects that prefer a phase very different from the average
background phase.
To assess the longer length scale effects of impurities, we

construct Delaunay loops [18–21,28] based on the CDW
maxima (see the Supplemental Material [27]). Failure of a
loop to close indicates the presence of one or more
uncompensated topological defects inside the loop.
Figure 1(b) presents sample loops.While small loops around
some impurity sites (broken lines) fail to close, indicating
the presence of impurity-induced topological defects,
loops of size larger than a few lattice constants (solid lines)
do close, indicating that in this field of view dislocations
appear only in bound dislocation-antidislocation pairs.
The loops continue to close even if the size of the loop
becomes as large as the image size, implying that on the
length scales accessible to this experiment, there are no free
dislocations, in other words that the system is in a Bragg
glass phase [4–12], with the decay of the δρ autocorrelation
being produced primarily by a smoothly varying phase field,
as shown in the main panel of Fig. 1(c).
Thus, in summary, the data presented here indicate that

the impurities observed in this NbSe2 sample are strong
pinning centers, but nevertheless leave the system in a
Bragg glass phase, in apparent disagreement with the
conventional idea that the strong impurities induce free
topological defects and completely destroy the order [2,3].
To address the issue we present an energy analysis based on
the assumption that the impurities are strong, but also dilute
on the scale of the bare CDW coherence length. The
analysis is inspired by Refs. [29] and [30], but goes beyond
these works by taking into account the long-ranged
correlations implied by the fact that the phases obey the
Laplace equation.
A crucial issue in the analysis is the dimensionality of the

system. While NbSe2 has very anisotropic electronic
properties [22], we believe that the appropriate model is
three dimensional for the following reasons. First, three-
dimensional critical scattering is observed in the similar
compound 2H-TaSe2 [23], with correlation lengths in the
in-plane and out-of-plane directions differing only by a
factor of 3. Second, below the transition temperature, the
development of the order parameter agrees with mean-field
theory [23], while a two-dimensional incommensurate
CDW cannot show a true long-range order [31]. Third, a
first principles calculation showed that single layer NbSe2
does not exhibit the 3 × 3 periodicity [32]. These argu-
ments suggest that, most likely because of lattice effect, the

CDW in NbSe2 is not unusually anisotropic. In this Letter
we therefore focus on the three-dimensional case, com-
menting briefly on the differences arising in spatial dimen-
sion d ¼ 2. More details can be found in the Supplemental
Material [27].
For simplicity, we consider a CDW described by one

phase variable ϕ, and neglect amplitude modulation.
We now add impurities at positions xa; these impurities
act to locally pin the phase to the values θa. At distances
j~x − ~xaj ≫ ξ (ξ is the coherence length of the CDW) the
phase will change; this may take place either by a smooth
modulation [as shown in the right inset of Fig. 1(c)] or by
creation of a defect-antidefect pair [as shown in the left
inset of Fig. 1(c)]. In the absence of defects the free energy
of this phase only model is

F ¼
Z

d3~xρSð ~∇ϕÞ2 − jVj
X
a

cos ½θa − ϕð~xaÞ�; ð2Þ

where ρS is the phase stiffness, xa labels the positions
of the impurities, θa is the phase energetically favored by
the impurity at xa (this depends on the position of the
impurity), and V is the magnitude of the impurity potential
[taken to be the same for all impurities in light of the weak
variation of amplitudes found in Fig. 1(a)]. We have
rescaled lengths by the ratio of in-plane to out-of-plane
coherence lengths. In a simple model, we expect that ρS ∼
f0jψ j2ξ20 ∼ f0tξ20 with f0 a measure of the condensation
energy per unit volume at T ¼ 0, ψ the CDWamplitude, ξ0
a bare coherence length, and t ¼ ðTc − TÞ=Tc the reduced
temperature, while V ∼ V0ψ ∼ V0

ffiffi
t

p
is proportional to a

bare pinning potential V0 and to the first power of the CDW
amplitude. We assume the impurities are dilute (mean
interimpurity distance l much greater than CDW correla-
tion length ξ ¼ ξ0=

ffiffi
t

p
) [25,26]; this condition breaks down

close to the transition temperature, or for dense impurities.
We now consider the energetics of smoothly varying

phase configurations, assuming for simplicity that V0 is
very large. At distances larger than a correlation length
from any impurity site, minimization of Eq. (2) shows that
the phase obeys the Laplace equation ∇2ϕ ¼ 0. So a
general solution in the three-dimensional case is (for
j~x − ~xaj > ξ)

ϕð~xÞ ¼
X
a

θ̄aξ

j~x − ~xaj
; ð3Þ

where the θ̄a are parameters to be determined. Substituting
this into Eq. (2), we obtain

F
V
¼ ϵ

2

X
ab

Kabθ̄aθ̄b þ
1

2

X
a

�
θa −

X
b

Kabθ̄b

�
2

; ð4Þ

where the variable inside the parenthesis is taken to be in
the range ½−π; π�, ϵ ¼ 8πρS=V, and I is the identity matrix.
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The kernel is Kab¼δabþð1−δabÞξ=j~xa−~xbj. Minimizing
Eq. (4) gives

θ̄a ¼
X
b

ðϵI þ KÞ−1abθb: ð5Þ

The Coulombic form of K means that the inverse matrix
ðϵI þ KÞ−1 has a screening form with a characteristic
length rTF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l3ð1þ ϵÞ=4πξ

p
; its Fourier components are

ðϵI þ KÞ−1ðpÞ ¼ p2

ð1þ ϵÞðp2 þ r−2TFÞ
: ð6Þ

Thus, even if the phases θa preferred by the impurities are
random variables, on scales longer than rTF fluctuations of
the θ̄ are suppressed. As a result, the variance hϕð0Þ2i is not
infrared divergent and the solution given in Eq. (5) there-
fore may have a long-ranged order. A further analysis, to be
presented in detail elsewhere, shows that the phase fluc-
tuation spectrum is gapped (energy cost of a phase
fluctuation of momentum p∼p2 þ r−2TF). Similar conclu-
sions are found for the two-dimensional case, but with a
parametrically shorter screening length rTF ∼ l and a more
significant effect of defects. There is also a strong depend-
ence of the quantitative results on the short length scale
cutoff.
We also numerically solved Eq. (5) when ϵ ¼ 0 on a

regular lattice with a lattice constant ξ and nimp ≃ 0.4%.
Figure 3 shows typical phase configurations in two and
three dimensions on a plane (details are presented in the
Supplemental Material [27]). In both cases, the phase varies
slowly at long length scales; the two-dimensional case,
however, has more short length fluctuations (the exact
amount depends on the detail of the ultraviolet cutoff).
We now turn to the question of local topological defects.

Making a defect on one site a allows the phase to relax
rapidly from the value preferred by the local impurity
towards a background value determined by the other
defects, decreasing the elastic free energy at the cost
of driving the amplitude to zero over a correlation volume.

We may estimate that the defect costs an energy Evortex ∼
f0t2ξ3=2 ∼ f0

ffiffi
t

p
ξ30=2 ∼ ρSξ with f0 the zero temperature

condensation energy density defined above. The energy
gain is associated with removing one defect from the elastic
energy. Using the screened Coulombic form of K−1 and
noting that the θa are random variables we obtain that the
elastic energy gain is roughly

Eelastic ≃ 4πρSξð1þ ϵÞ−1θ2a þOðξ=lÞ: ð7Þ
Thus, the energy cost of making a defect-antidefect
pair is parametrically equal to the cost of the phase
deformation and which one is preferred is determined by
an intrinsic property of the CDW [namely the ratio
κ ¼ 4πρSξ=Evortexð1þ ϵÞ] and the square magnitude of
the phase deviation caused by the impurity. Our finding that
about 20% of impurities induce defects suggests that
κ ≈ 0.16, and that defects are only produced when the
phase deviates by an amount near its maximal value
(θa ≈ π). In spatial dimension d ¼ 3 a small finite density
of defect loops has no effect on long-ranged order, but in
spatial dimension d ¼ 2 a finite density of vortex or
antivortex causes an algebraic decay of correlations (see
the Supplemental Material [27]).
In summary, we have investigated impurity-induced

pinning in the CDW state of NbSe2, a paradigm charge
density wave state. We find that the impurities are “strong”
(enhancing the local CDW amplitude by a factor of 2), but
both experimental and theoretical analyses show that these
impurities lead to a charge density wave phase that varies
smoothly over scales parametrically longer than the inter-
impurity distance. Only a small fraction of the impurities
produce topological defects and these are found to occur
only in tightly bound dislocation-antidislocation pairs near
the impurities; the material is identified as being in the
Bragg glass phase on the scales attainable in the experiment
analyzed in this Letter. A model analysis shows that dilute
but strong impurities give a long-range order, and that the
ground state is gapped. The behavior at longer scales and
the effects of anisotropy are interesting open problems.
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dimensions. The lattice constant is ξ ∼ 1 nm, and the linear
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