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A fluid in equilibrium in a finite volume V with particle number N at a density ρ ¼ N=V exceeding the
onset density ρf of freezing may exhibit phase coexistence between a crystalline nucleus and surrounding
fluid. Using a method suitable for the estimation of the chemical potential of dense fluids, we obtain the
excess free energy due to the surface of the crystalline nucleus. There is neither a need to precisely locate
the interface nor to compute the (anisotropic) interfacial tension. As a test case, a soft version of the
Asakura-Oosawa model for colloid-polymer mixtures is treated. While our analysis is appropriate for
crystal nuclei of arbitrary shape, we find the nucleation barrier to be compatible with a spherical shape and
consistent with classical nucleation theory.

DOI: 10.1103/PhysRevLett.114.026101 PACS numbers: 68.03.Cd, 64.60.Q-, 68.08.-p

The nucleation of crystals from fluid phases and their
subsequent growth is one of the most important phase
transformations in nature [1–3]; applications range from
ice crystal formation in the atmosphere, to metallurgy,
nanomaterials, protein crystallization, etc. Despite its over-
whelming importance, crystal nucleation remains poorly
understood.
For the nucleation of a liquid drop from supersaturated

vapor, the average nucleus shape is clearly spherical. Only
the curvature dependence of the interfacial tension [4–9]
presents a stumbling block for the prediction of nucleation
barriers. Unlike interfaces between fluid phases, the crystal-
fluid interface tension γð~nÞ depends on the orientation
of the interface normal ~n relative to the crystal lattice axes
[10–12]. For isotropic γ, the nucleus is a sphere of radius R
(volume V ¼ 4πR3=3Þ and its surface excess free energy is
Fsurf ¼ 4πR2γ ¼ AisoγV2=3, with Aiso¼ð36πÞ1=3. For crys-
tals, the term Aisoγ is replaced by a complicated expression

FsurfðVÞ ¼
Z

AW

γð~nÞd~sV2=3 ≡ AW γ̄V2=3: ð1Þ

Here, AW is the surface area of a unit volume whose
shape is derivable from γð~nÞ via the Wulff construction
[10–12], and the average interface tension γ̄ is defined as
γ̄ ¼ A−1

W

R
γð~nÞd~s.

In the classical nucleation theory [1–3], the formation
free energy of a nucleus is written in terms of volume and
surface terms as

ΔF ¼ −ðpc − plÞV þ FsurfðVÞ: ð2Þ
Here, pc is the pressure in the crystal nucleus and pl in the
(metastable) liquid phase surrounding it. In the thermody-
namic limit, the configuration with one nucleus on top of
the free-energy barrier in the metastable phase is a saddle

point in configuration space. The condition for (unstable)
equilibrium ∂ðΔFÞ=∂V ¼ 0 then yields the critical nucleus
volume V� and barrier ΔF�,

V� ¼
�

2AW γ̄

3ðpc−plÞ
�
3

; ΔF� ¼ 1

3
AW γ̄V�2=3¼ 1

2
ðpc−plÞV�:

ð3Þ

Even if V� is large enough so that correction terms to
Eq. (2) can be neglected, the application of Eq. (3) is
difficult due to lack of knowledge on AW and γ̄. This lack
of knowledge has hampered the comparison of observed
nucleation rates [13–16] (and the barriers extracted from
them) and simulations [17–20] where ΔF� was estimated
directly by biased sampling methods. These comparisons
were made for suspensions of (hard spherelike) colloidal
particles; the large size of the colloids has the advantage of
allowing direct microscopic observations of crystal-liquid
interfaces [21] and nucleation events [22,23]. Since kinetic
processes for colloids are many orders of magnitude slower
than those for small molecules, colloids are model systems
for the study of the liquid-solid transition [24,25] and well
suited to separate nucleation from the subsequent crystal
growth.
However, to elucidate the persisting discrepancies

between simulations and experiments, one needs to know
more about the theoretical nucleation barriers: How large
must V� be so that Eq. (3) is a good approximation?What is
the physical origin of corrections to ΔF� [Eq. (3)] and their
magnitude? Is it legitimate to assume a spherical shape of
the nucleus, despite its crystalline structure? And so on.
Understanding the general conditions under which the
classical description [Eqs. (2), (3)] holds will be useful
to understand liquid-solid transitions in condensed matter
in general.
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In the present Letter, we address these issues and show
how both V� and ΔF� can be obtained, considering the
equilibrium of the system at fixed finite particle number N
in a finite simulation box Vbox. For a suitable range of
density ρ ¼ N=Vbox, the equilibrium between the crystal-
line nucleus and surrounding fluid is perfectly stable.
We explain how both V� and pc − pl can be estimated
directly and accurately. Using then ΔF� ¼ ðpc − plÞV�=2
[Eq. (3)], the need of dealing with γðn̄Þ and the use of
Eq. (1) is bypassed. So we do not need to assume anything
on the shape of the nucleus.
Thus, the central idea of the present work is to explore

the deviations from phase coexistence in the thermody-
namic limit (where the chemical potential μ ¼ μcoex and the
pressure p ¼ pcoex for all densities from the onset density
of freezing ρf to the onset density of melting ρm) caused
by finite size. Thus, the part of the isotherm in Fig. 1
corresponding to the homogeneous fluid for finite volume
Vbox exceeds ρf and continues up to the “droplet evapo-
ration condensation transition” [26] at ρ1, where for the first
time a crystalline droplet in the system becomes stable.
Note that this transition is a sharp phenomenon only when
Vbox → ∞ (and then ρ1 → ρf, consistent with the lever rule
[27]). At a second special density ρ2, the “droplet” changes
its shape from compact to cylindrical (stabilized by the
periodic boundary conditions). At about ρ ¼ ρ3 a slab
configuration, separated from the fluid by two planar
interfaces, appears (Fig. 1). In this region, μ ¼ μcoex and

p ¼ pcoex holds true also in the finite system, if the linear
dimensions in the directions parallel to the planar interfaces
are chosen such that the crystal (at density ρm) is com-
mensurate without any distortion. The analogous behavior
for vapor to liquid transitions is well studied [9,28–30].
Here, we show that the descending part of the pðρÞ and
μðρÞ isotherms can be used to extract information on
Fsurf ; V� and ΔF� for the liquid-solid transition as well.
In the snapshots, the particles in the fluid region are

shown in blue and in the crystal are shown in red, using the
averaged Steinhardt local bond order parameters [31,32]
to distinguish the character of the phases (see Ref. [32]
for definitions and implementation details). Particles in
the interfacial region, for which this classification yielded
ambiguous results, are shown in green color. The face-
centered cubic (fcc) packing of the crystal is clearly seen,
and the cross section through the droplet also suggests that
the shape may be nonspherical.
The model of our simulations qualitatively describes

colloid-polymer mixtures [33–36]. In the Asakura-Oosawa
(AO) model [33], colloids are described by hard spheres
of diameter σc and polymers as soft spheres (which may
overlap each other without energy cost) of diameter σp.
Of course, the mutual overlap of colloids and polymers is
also strictly forbidden. Polymers create the (entropic)
depletion attraction between colloids [33]; varying the size
ratio q ¼ σp=σc and the polymer density, one can tune the
phase diagram [34–36] and interfacial properties [37,38].
A useful feature of this model occurs for q < q� ¼ 0.154
[35,39]; then one can integrate out the polymer degrees of
freedom exactly, and one is left with an effective pairwise
potential, which is attractive in the range of σc < r <
σc þ σp (and zero for r > σc þ σp), but infinitely repulsive
for r < σc. The strength of the potential of this “effective”
(Eff) AO model is controlled by the fugacity zp of the
polymers [39] (Fig. 2, inset).
However, it is computationally more convenient to

replace the Eff AO model by a similar but continuous
potential, the soft Eff AO model [39] (Fig. 2, inset). For this
model, the pressure (in the fluid phase) is straightforwardly
obtained in the simulation from the Virial expression
[39,40], while for the Eff AO model due to the disconti-
nuity at r ¼ σc this is very cumbersome [38]. Figure 2
shows that the variation of p with η is very similar for both
potentials. Since real colloids never are described by hard
spheres precisely [41], nor are polymers precisely modeled
by ideal soft spheres [42], a quantitatively accurate model-
ing of real systems cannot be attempted anyway. The
soft Eff AO model is proposed here as a coarse-grained
qualitative model of colloid-polymer mixtures, which is
practically useful in a simulation context.
With the use of the Virial expression, the pressure pl of

the liquid in the region surrounding the crystal nucleus
in Fig. 1 (far from the interfacial region) can be readily
measured, but obtaining pc inside the nucleus for small

FIG. 1 (color online). Schematic plot of the chemical potential
μ vs density ρ for a system undergoing a liquid-solid transition
in a finite box volume Vbox with periodic boundary conditions.
(A plot of pressure p vs ρ would qualitatively look just the same).
Because of interfacial effects, non-negligible in finite systems, the
isotherm deviates from p ¼ pcoex in the two-phase coexistence
region, ρf < ρ < ρm. The features in the curve (kinks in reality
are rounded due to fluctuations) are due to transitions between the
different states shown in the figure via snapshots of the simulated
generalized Asakura-Oosawa model. Only the part where the
solid phase is the minority phase is discussed. For further
explanations, see the text.
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nuclei is not reliably possible. It is necessary to base the
analysis of the two-phase equilibrium in Vbox on the
chemical potential μ, because μ is strictly constant in
equilibrium also in a spatially inhomogeneous situation.
But the standard particle insertion method [40,43] does not
work at high packing fractions η near ηm. Thus, we have
extended an approach [44] to sample the chemical potential
of a dense fluid by studying a system where walls are
present, using a soft wall that reduces the density suitably
such that particle insertion works there (Fig. 3). Of course,
it is important to choose Lz large enough so that outside
of the range of z, for which the walls affect the density
profile, a constant density is actually reached. Figure 3
demonstrates that in this way the chemical potential can
be obtained accurately even for η > ηf. The pressure p
[computed in the region where ηðzÞ ¼ ηbulk ¼ constant]
agrees with the corresponding bulk data of Fig. 2.
Now we exploit the fact that μ is constant throughout the

system also when a crystalline nucleus is present (Fig. 1):
the chemical potential in the fluid μfðplÞ equals that of the
crystal nucleus μcðpcÞ. From μcðpcoexÞ ¼ μlðpcoexÞ ¼ μcoex
we readily find, using the expansions

μcðpcÞ ≈ μcoex þ
π

6

1

ηm
ðpc − pcoexÞ; ð4Þ

μlðplÞ ≈ μcoex þ
π

6

1

ηf
ðpl − pcoexÞ; ð5Þ

that ðpc − pcoexÞηf ¼ ðpl − pcoexÞηm. Since we have recor-
ded both functions μlðηÞ and plðηÞ, we also know μlðplÞ

and, hence, can verify that the data indeed fall in the
regime where the linear expansion of Eq. (5) holds. Finding
μcðpcÞ via thermodynamic integration [using μcðpcoexÞ ¼
μlðpcoexÞ as the starting point], we have verified that Eq. (4)
also introduces only negligible errors.
The two-phase equilibrium of a crystalline droplet

surrounded by fluid has been studied for three system
sizes, keeping the number of colloids in the simulation box
fixed (at N ¼ 6000, 8000, and 10 000, respectively) and
varying Vbox and hence ρ ¼ N=Vbox. In thermal equilib-
rium, we then have a finite-size variant of the lever rule

ηVbox ¼ ηlðplÞðVbox − V�Þ þ ηcðpcÞV�: ð6Þ
While for Vbox → ∞ we would have pl ¼ pc ¼ pcoex
and ηcðpcoexÞ ¼ ηm, in the finite system pl; pc and the

FIG. 2 (color online). Normalized pressure ~p ¼ pσ3c=kBT
plotted vs packing fraction η≡ ρπσ3c=6 of the colloids, for the
Eff AO model (asterisks) and its soft version (soft Eff AO,
squares). Curves are a guide to the eye only. These data were
obtained from simulations of homogeneous liquid and solid (fcc)
phases, while the pressure where two-phase coexistence occurs
was found from the “interface velocity method” [37], namely,
~p ¼ 8.44� 0.04 (soft Eff AO) and ~p ¼ 8.06� 0.06 (Eff AO).
The coexistence packing fractions are ηf ¼ 0.495ð1Þ and
ηm ¼ 0.636ð1Þ for the soft Eff AO case. The inset compares
the potentials of the Eff AO (which is singular at r ¼ σc ¼ 1) and
soft Eff AO models.

FIG. 3 (color online). (a) Illustration of the method to compute
the chemical potential of a very dense fluid, using an L × L × Lz
slab geometry, with a soft wall at z ¼ 0 and a hard wall at
z ¼ Lz ¼ 30 (lengths being measured in units of σc, L ¼ 7, and
four choices of N are used, N ¼ 750, 950, 1100 and 1250,
respectively). Inset shows μ in units of kBT as a function of z,
for the four choices shown, over the regions of z where particle
insertion works. (b) Chemical potential μ (in units of kBT) plotted
vs η, for different choices of L and Lz, as indicated, to show that
finite-size effects are negligible. The data labeled by “Widom”
at not so large η values are obtained by the standard particle
insertion method for homogeneous bulk systems. Arrows on
abscissa and ordinate indicate ηf and μcðpcoexÞ=kBT, respectively.
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corresponding packing fractions differ from their coexist-
ence values. Initializing the simulation by putting a crystal
of about the right volume V� and about the right choice for
ηcðpcÞ in the box, after a long period of equilibration we
measure both pl and ηlðplÞ in the fluid region (far from
the crystal) and verify [from the data of the bulk simulation,
Fig. 3(b)] that equilibrium has been reached. Since we
know also the chemical potential ½μcðpcÞ ¼ μlðplÞ is
constant], we can obtain pc and also ηcðpcÞ, and hence,
Eq. (6) determines V� unambiguously.
Figure 4 shows the data for Δp ¼ pl − pcoex vs η.

Actually, when we use the chemical potential μlðplÞ from
Fig. 3(b) and obtain Δp from Eq. (5), the data are precisely
reproduced, which is just a consistency check. From
simulations determining γ for interfaces parallel to 111,
110 and 100 planes [45], it is found that γð~nÞ depends only

very weakly on ~n. For comparison with classical nucleation
theory, we neglect the dependence on ~n and take
γ ≈ γ111 ≈ γð~nÞ ¼ 1.013 [45]. Assuming a spherical shape
V� ¼ 4πR�3=3, we find Δp ¼ ð2γ=R�Þ=ðηm=ηf − 1Þ.
Using the observed values of V� one then obtains a
prediction for the curves ΔpðηÞ. We find that these
predicted curves fall slightly below the actual observed
data. They can be brought in good agreement if they are
rescaled by a constant factor of c ¼ 1.07. This small
enhancement can be due to the ratio A=Aiso or errors in
the estimation of γð~nÞ. Unexpectedly, we hence find that for
our model of colloid-polymer mixtures the assumption of a
spherical nucleus shape works rather well, but it would not
be needed to predict the nucleation barrier. With the use of
Eq. (2), knowledge of pc − pl and V� suffices to predict
ΔF�. One can expect, however, that significant derivations
from spherical nucleus shape will appear for large ηrp in our
model, where the fluid is a vaporlike phase, and γð~nÞ will
depend more strongly on ~n. Gratifyingly, Fig. 4(b) shows
that the three choices for N superimpose to a common
curve, so in the shown regime finite-size effects essentially
are negligible.
In summary, we have shown that for the liquid-solid

transition a description of nucleation barriers in terms of the
classical nucleation theory holds, at variance with studies
of nucleation with hard spherelike colloids [13–20,46].
However, we feel the latter studies are inconclusive, due
to their use of too large ηl (0.53 < ηl < 0.57) where the
slowing down due to the kinetic prefactor of the nucleation
rate matters [47]. While the range of ΔF� in Fig. 4(b)
corresponds to ηl=ηf − 1 ≤ 0.06, the range of the experi-
ments in Fig. 4(b) would correspond to 5 < ΔF� < 10 only.
By an analysis of finite-size effects on phase coexistence,

both V�; pl; pc and the chemical potential for this stable
two-phase coexistence in a finite simulation box can be
reliably estimated. The numerical results also clearly show
that in the regime where ΔF� ≥ 80 the relation ΔF� ∝
V�2=3 holds precisely, as visible from the fit in Fig. 4(b);
thus, we have verified that classical theory of homogeneous
nucleation for crystals is accurate, in this regime of barriers,
provided one takes into account that the nucleus shape is in
general nonspherical. However, since the two straight lines
in Fig. 4(b) almost coincide, the spherical approximation
is shown here to be almost perfect. Since crystal faces in
contact with a dense fluid are frequently atomically rough,
the spherical approximation is expected to be quite good
generally, in particular for somewhat smaller nuclei, for
which the nucleation rates also would be larger.
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the Höchstleistungsrechenzentrum Stuttgart (HLRS) and
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FIG. 4 (color online). (a) Pressure difference Δp ¼ pl − pcoex
between the pressure pl in a fluid surrounding a crystal nucleus
of finite size and the coexistence pressure, plotted vs the average
packing fraction η in the simulation box, for particle number
N ¼ 6000, 8000, and 10 000 (symbols, from bottom to top).
Curves show the formula Δp ¼ ð2γ=R�Þc=ðηm=ηf − 1Þ with
c ¼ 1.07, extractingR� from the assumption of a spherical nucleus
ðV� ¼ 4πR�3=3) and taking γ ≈ ~γ111 ≈ 1.013 [45]. (b) ΔF� com-
puted from pl; pc and V� [using Eqs. (2), (5), and (6)] plotted
vs V�2=3; straight line is Eq. (3) with A ¼ Aiso and ~γ ¼ γ111. The
dotted line is a fit illustrating ΔF� ∝ V�2=3.
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