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We examine correlations of transverse particle displacements and their relationship to the shear modulus
of a glass and the viscosity of a fluid. To this end we use computer simulations to calculate a correlation
function of the displacements, S4ðq; tÞ, which is similar to functions used to study heterogeneous dynamics
in glass-forming fluids. We show that in the glass the shear modulus can be obtained from the long-time,
small-q limit of S4ðq; tÞ. By using scaling arguments, we argue that a four-point correlation length ξ4ðtÞ
grows linearly in time in a glass and grows as

ffiffi
t

p
at long times in a fluid, and we verify these results by

analyzing S4ðq; tÞ obtained from simulations. For a viscoelastic fluid, the simulation results suggest that the
crossover to the long-time

ffiffi
t

p
growth of ξ4ðtÞ occurs at a characteristic decay time of the shear stress

autocorrelation function. Using this observation, we show that the amplitude of the long-time
ffiffi
t

p
growth is

proportional to
ffiffiffi
η

p
where η is the viscosity of the fluid.
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The resistance of a rigid body to static, volume preserv-
ing stresses implies the presence of long-range correlations
[1]. Such correlations are easy to rationalize in crystalline
solids, where they originate from spontaneously broken
translational symmetry [2]. In contrast, glasses are rigid but
their structural properties are very similar to those of fluids.
In fact, although long-range density correlations in glasses
were predicted on general grounds [3], their detailed
characteristics remain elusive. Recent studies have found
that dynamics in glass-forming fluids are heterogeneous
[4], and that the characteristic size of dynamically hetero-
geneous regions grows and may diverge upon approaching
the glass transition. Theoretical arguments [5,6] support
the presence of the spatially correlated dynamics also
in the glass. Outstanding fundamental questions are con-
cerned with the existence of fundamental relations between
heterogeneous dynamics and the growing viscosity in
glass-forming fluids, and between correlated dynamics
and the elasticity of glasses.
To provide insight into these questions, we examine

correlations of time-dependent particle displacements in
glasses and glass-forming fluids, using functions originally
proposed to study heterogeneous dynamics. We show that,
in glasses, these correlations are long ranged and are related
to the shear modulus of the glass. In glass-forming fluids,
the displacement correlations provide information about
the fluid’s viscoelastic response.
Dynamic heterogeneity in simulations is commonly

studied by examining a four-point structure factor,

S4ðq; tÞ ¼
1

N

�X
n;m

g½δrnðtÞ�g�½δrmðtÞ�eiq·½rnð0Þ−rmð0Þ�
�
;

ð1Þ

where the weighting function g½δrnðtÞ� depends on the
displacement δrnðtÞ ¼ rnðtÞ − rnð0Þ of particle n between
an initial time 0 and a time t, and rnðtÞ is the position of
particle n at t. The weighting function g½δrnðtÞ� is chosen to
examine features of the dynamics. For example, to study
spatial correlations of mobility one popular choice [7] is the
overlap function, g½δrnðtÞ� ¼ θ(a − jδrnðtÞj), where θðxÞ is
Heaviside’s step function, which selects particles that did
not move farther than a from their original positions. With
this choice of g½δrnðtÞ� several studies [7,8] showed that the
four-point structure factor monitored at the relaxation time
of the fluid develops a peak at q ¼ 0 that grows upon
supercooling. This peak indicates an increasing clustering
of slow particles upon supercooling.
Here we study dynamic correlations of time-dependent

transverse particle displacements. We choose g½δrnðtÞ� ¼
rαnðtÞ − rαnð0Þ where α is a fixed direction, and we select
the direction of q such that it is perpendicular to α.
This choice of g½δrnðtÞ� allows us to establish a direct
link between spatially correlated dynamics and the
emergence of rigidity. For the rest of this Letter
S4ðq; tÞ denotes the four-point structure factor with this
weighting function.
We simulated a standard model glass-forming system, a

repulsive harmonic sphere mixture [9], whose properties
have been extensively characterized [9,10]. We give
simulation details in the Supplemental Material [12]. We
examined the first four decades of slowing down,
which corresponds to temperatures 20 ≥ T ≥ 5 (the
mode-coupling transition temperature Tc ¼ 5.2), and we
simulated glasses at T ¼ 3 and T ¼ 2.
In Fig. 1 we show S4ðq; tÞ at several different times for a

glass at T ¼ 3, a viscous fluid at T ¼ 5, and a moderate
temperature fluid at T ¼ 20. These times are indicated on
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the mean square displacement hδr2ðtÞi ¼ N−1hPnδr
2
nðtÞi,

which is shown in Fig. 1(d).
We note important limiting behaviors of S4ðq; tÞ. First,

due to the momentum conservation limq→0S4ðq; tÞ≡
χ4ðtÞ ¼ kBTt2=m [11]. Second, in the large q limit
only the diagonal terms in Eq. (1) contribute and
S4ðq; tÞ ¼ hδr2ðtÞi=3.
For the glass S4ðq; tÞ saturates at all the small wave

vectors that we can access in our simulation, Fig. 1(a). In
the t → ∞ limit S4ðq; tÞ exhibits a q−2 divergence indicat-
ing power law decay of the correlations in direct space.
This behavior of S4ðq;∞Þ in the glass can be understood
using arguments similar to those presented by Klix et al.
[18]. Briefly (see the Supplemental Material [12] for

more details), we start with the transverse current
j⊥ðq; tÞ ¼ N−1=2P

nv
⊥
n ðtÞeiq·rnðtÞ where v⊥n is the trans-

verse component of the velocity of particle n, v⊥n · q ¼ 0.
Then, we define a correlation function hδu⊥

q ðtÞδu⊥
−qðtÞi

where δu⊥
q ðtÞ ¼

R
t
0 j

⊥ðq; tÞ. It can be shown that
limq→0hδu⊥

q ðtÞδu⊥
−qðtÞi is equal to limq→0S4ðq; tÞ if the

particles displacements are finite; as they are in the glass.
Next, we relate hδu⊥

q ðtÞδu⊥
−qðtÞi to the transverse current

correlation function, Ctðq; tÞ ¼ hj⊥ðq; tÞj⊥ð−q; 0Þi. For
the latter function one can derive an exact but formal
equation of motion,

dCtðq; tÞ
dt

þ
Z

t

0

Mðq; t − sÞCtðq; sÞds ¼ 0: ð2Þ
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FIG. 1 (color online). (a)–(c) S4ðq; tÞ for a glass at T ¼ 3 (a), a viscous fluid at T ¼ 5 (b), and a moderate temperature fluid at
T ¼ 20 (c). The horizontal lines for T ¼ 3 and 5 indicate χ4ðtÞ ¼ kBTt2=m for t ¼ 30 and t ¼ 120. The horizontal lines for T ¼ 20
indicate χ4ðtÞ for all the times shown. Note that the oscillations for T ¼ 3 and 5 at t ¼ 120 are due to the propagating transverse wave.
The inset in (a) and (b) shows 2kBTρ½S4ðq; tÞq2�−1 where the horizontal region is used to calculate the shear modulus μ of the glass
(T ¼ 3) and the plateau value of the shear stress autocorrelation function of the viscous fluid (T ¼ 5). In the inset to (a) the continuous
horizontal line is the shear modulus calculated from the average of the shear stress autocorrelation function, Fig. 2, between t ¼ 100 and
10 000. In the inset to (b) the continuous horizontal line is the plateau value of the shear stress autocorrelation function Gp. The inset in
(c) shows the scaling plot of S4ðq; tÞ=χ4ðtÞ versus qξ4ðtÞ for T ¼ 20. The continuous line is the Ornstein-Zernicke function
1=½1þ ðqξ4Þ2�. (d) The mean-square displacement, hδr2ðtÞi, for T ¼ 3, 5, and 20. The symbols indicate times at which S4ðq; tÞ is shown
in panels (a)–(c) where the shapes of the symbols correspond to the times shown in panels (a)–(c). The upturn of hδr2ðtÞi at the longest
times at T ¼ 3 occurs since our system is aging; with increasing glass annealing time it appears at later and later times. In contrast, the
late-time increase of hδr2ðtÞi at T ¼ 5 is not subject to aging and does not change with increasing equilibration time.
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In the q → 0 limit ρkBTVq−2Mðq; tÞ is equal to the shear
stress tensor autocorrelation function hσxyðtÞσxyð0Þi [19],
see Sec. 9.3 of Ref. [20]. Finally, by examining the t → ∞
limit of Ctðq; tÞ and hδu⊥

q ðtÞδu⊥
−qðtÞi one can show that

limq→0limt→∞2kBTρ½S4ðq;tÞq2�−1¼limt→∞hσxyðtÞσxyð0Þi=
ðkBTVÞ if the particle displacements are finite. Since the
nondecaying part of hσxyðtÞσxyð0Þi=ðkBTVÞ is identified
with the glass shear modulus μ [18], we obtain the
relation limq→02kBTρ½S4ðq;∞Þq2�−1 ¼ μ.
To test this relation we calculated the shear stress

autocorrelation function, Fig. 2 (see the Supplemental
Material [12] for details of the calculation). In the fluid,
the autocorrelation function exhibits a two-step decay with
an intermediate plateau followed by the final structural
relaxation. In the glass, there is no final relaxation (on the
time scale of the simulation) and this function develops
a nondecaying plateau, which is equal to the shear
modulus μ.
Using S4ðq;∞Þ we obtained μ ¼ 0.013� 0.001, which

compares well with the result μ ¼ 0.012� 0.002 obtained
from hσxyð∞Þσxyð0Þi=ðkBTVÞ. As an independent check,
we used a standard formula for the shear modulus [21] and
obtained μ ¼ 0.010� 0.004. These calculations agree to
within error, and similar calculations for the glass at T ¼ 2
also agree. We emphasize that the S4ðq;∞Þ calculation is
significantly faster than the latter two due to large can-
cellations involved in the latter calculations. They require
simulations that are at least 2 orders of magnitude longer.
The important difference between our evaluation of the

modulus and an earlier calculation of Klix et al. [18] is that

our procedure does not require finding average positions of
particles during the time t. Our four-point structure factor is
well defined both in the glass and the fluid phase and allows
one to distinguish between these phases, which is dis-
cussed below.
For a viscous fluid there is an intermediate time window

where S4ðq; tÞ exhibits features similar to those observed
for the glass, Fig. 1(b). Specifically, at small wave vectors
we see a q−2 dependence of S4ðq; tÞ with an approximately
time-independent coefficient. We show in the inset in
Fig. 1(b) that this transient solidlike q−2 behavior is related
to the transient plateau of the shear stress autocorrelation
function. For times within the plateau region and for small
wave vectors 2kBTρ½S4ðq; tÞq2�−1 is equal to Gp, whereGp

is the amplitude of the stretched exponential fit to the final
decay of hσxyðtÞσxyð0Þi=ðkBTVÞ.
Finally, at a moderate temperature S4ðq; tÞ increases at

all times and wave vectors, Fig. 1(c). Since the small wave-
vector limit of S4ðq; tÞ increases with time faster than does
the large wave-vector limit, we should expect that a
dynamic correlation length defined through the correlations
of transverse displacements diverges in the long-time limit.
To examine the dynamic correlation length we first

verify a scaling hypothesis. We assume that there exists
a function f½·� such that S4ðq; tÞ=χ4ðq; tÞ ≈ f½qξ4ðtÞ�,
where fðxÞ¼1−x2 for x ≪ 1, and fðxÞ ∼ x−2þσ for
x≫1. In practice, we determine the dynamic correlation
length ξðtÞ from the Ornstein-Zernicke fit, fðxÞ ¼ 1=
ð1þ x2Þ for q ≤ 1.0. In the inset to Fig. 1(c) we show
the excellent data collapse that results by plotting
S4ðq; tÞ=χ4ðq; tÞ versus ξ4ðtÞq, thus confirming the scaling.
To find σ we fit S4ðq; tÞ for 5 ≤ qξ4ðtÞ ≤ 20 for t ≥ 1024 at
T ¼ 20 to Ax−2þσ and get σ ¼ −0.23� 0.07.
In Fig. 3 we show ξ4ðtÞ for all T. We find a nearly

temperature independent initial linear increase in time
followed by an increase as

ffiffi
t

p
for later times for T ≥ 6.

At T ¼ 5 there is a deviation from the linear increase,
and we expect that we would observe the

ffiffi
t

p
dependence if

we could calculate S4ðq; tÞ for later times, but our system
size and simulation length prohibits this calculation. We
note that, if calculated at the relaxation time of the fluid
(arrows in Fig. 3), which is around the beginning of the

ffiffi
t

p
growth, the lengths shown in Fig. 3 are orders of magnitude
larger and increase significantly faster with decreasing
temperature than any previously studied four-point corre-
lation lengths.
In the glass, the linear growth of ξ4ðtÞ with t is related to

the shear modulus. Indeed, in order to get a finite
limt→∞S4ðq; tÞ that is inversely proportional to q2 we need
σ ¼ 0 and ξ4ðtÞ ∝ t. Furthermore, the relation between
S4ðq;∞Þ and the modulus allows us to find the coefficient
of proportionality and ξ4ðtÞ ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ=ð2ρmÞp

. This relation is
shown as the solid line in Fig. 3.
We emphasize that particle displacements in the glass are

bounded and, therefore, S4ðq; tÞ has a well-defined, finite
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FIG. 2 (color online). Shear stress autocorrelation function as a
function of time for T ¼ 20, 15, 12, 10, 8, 7, 6, 5, and 3 listed
from left to right. The dashed horizontal line is the shear modulus
at T ¼ 3 obtained from the 2kBTρ½S4ðq; tÞq2�−1 for t ¼ 7680.
The black lines in the main figure are stretched exponential
fits to the final decay, Gp exp ½−ðt=τσÞβ�. These fits are also
shown in the inset for T ¼ 20, 15, 12, 10, 8, 7, 6, 5, listed from
left to right. The amplitude of the final decay Gp is the same
(within error bars) for T ¼ 6, 5.5 (not shown), and 5. The crosses
in the inset are placed at the time when ξðtÞ crosses over from
linear to

ffiffi
t

p
growth.
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long-time limit. The long-time divergence of ξ4ðtÞ reflects
the presence of long-range correlations that have to
accompany rigidity [1].
In analogy with the glass, in the fluid we find that the

initial linear growth of ξ4ðtÞ is related to the transient elastic
response, ξ4ðtÞ ≈ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gp=ð2ρmÞp

. The subsequent crossover
to

ffiffi
t

p
growth should be related to the transient elasticity and

the decay of the shear stress autocorrelation function.
The final decay of hσxyðtÞσxyð0Þi=ðkBTVÞ is well

described by a stretched exponential, Gp exp½−ðt=τσÞβ�.
The fits are shown as solid lines in Fig. 2. In the inset we
show that Gp exp½−ðt=τσÞβ� evaluated at the crossover time
(marked by crosses) is almost temperature independent
and approximately equal to 0.22Gp. This observation
allows us to relate the final long-time behavior of ξ4ðtÞ
to the viscosity. Since the final relaxation of the shear stress
autocorrelation function is well fit by a stretched exponen-
tial, and the viscosity is related to the integral of the shear
stress autocorrelation function, then for viscous fluids
η ≈GpτσΓð1=βÞ=β, where Γ is the gamma function (we
have ignored the small, short-time contribution to η). Thus,
ξ4ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tgðβÞη=ð2ρmÞp

, where gðβÞ is between 1.15 for
β ¼ 0.5 and 1.51 for β ¼ 1.0. We show three estimates for
final long-time behavior of ξ4ðtÞ in Fig. 3 as dashed lines,
where we calculated the viscosity from the shear stress
autocorrelation function. For T ≤ 6, the stretching expo-
nent β is constant; thus, gðβÞ is independent of temperature
and for long times ξ4ðtÞ ¼ K

ffiffiffiffi
tη

p
where K is a material

dependent constant.
We note that, in the fluid, S4ðq; tÞ grows with time

without any bound. The divergence of ξ4ðtÞ follows from
different small and large wave-vector time dependences of

S4ðq; tÞ. Its connection to fluid’s viscosity is based on an
empirical observation and it would be interesting to under-
stand it from a more fundamental perspective.
The above described features of S4ðq; tÞ and ξ4ðtÞ

followed from the exact result χ4ðtÞ ¼ kBTt2=m, which
in turn followed from momentum conservation. For a
Brownian system, in which the total momentum is not
conserved, χ4ðtÞ ¼ 2D0t where D0 is the diffusion coef-
ficient of an isolated particle. Preliminary results indicate
that in the long time limit, the small q dependence of
S4ðq; tÞ for a Brownian glass is identical to that presented
here. This is expected since the shear modulus should be a
static property of the glass and, thus, independent of the
microscopic dynamics. However, for a Brownian fluid we
expect that ξ4ðtÞ ∝

ffiffi
t

p
for short times and that ξ4ðtÞ

saturates for long times. We note this saturation behavior
was found in an earlier study of Doliwa and Heuer [22] in
which a direct space analog of S4ðq; tÞ was investigated.
However, their study did not connect the time dependence
of ξ4ðtÞ to a viscoelastic response.
These findings and preliminary results suggest that other

four-point correlation functions used to investigate dynamic
heterogeneity contain information about the viscoelastic
response of glass-forming fluids and the elastic response of
glasses. Indeed, if one uses the microscopic self-intermediate
scattering function, g½δrnðtÞ� ¼ exp½−ik · δrnðtÞ�, in Eq. (1)
for a fluid system with Newtonian dynamics, one gets a
susceptibility with a maximum that increases as the square of
the fluid’s relaxation time and a dynamic correlation length
that increases as the fluid’s relaxation time. This behavior is a
precursor of long-range density correlations that were
predicted to exist in the glass due to a spontaneously broken
translational symmetry at the microscopic level [3].
Our findings open the way to examine both viscoelastic

properties of glass-forming fluids and elasticity of glasses
through the analysis of time-dependent particle displace-
ments. This new, general approach requires much less
computational effort than the standard approach based on
the stress autocorrelation function. It should be especially
useful for colloidal systems, in which positions of colloidal
particles can be obtained via microscopy but interparticle
interactions are often not well characterized. Finally, this
method reveals a direct connection between the viscoelastic
response of supercooled liquids and spatially correlated,
collective motions of particles.
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