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The Efimov effect is the only experimentally realized universal phenomenon that exhibits the
renormalization-group limit cycle with the three-body parameter parametrizing a family of universality
classes. Recent experiments in ultracold atoms have unexpectedly revealed that the three-body parameter
itself is universal when measured in units of an effective range. By performing an exact functional
renormalization-group analysis with various finite-range interaction potentials, we demonstrate that the
onset of the renormalization-group flow into the limit cycle is universal, regardless of short-range details,
which connects the missing link between the two universalities of the Efimov physics. A close connection
between the topological property of the limit cycle and few-body physics is also suggested.
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In the early 1970s, Efimov predicted a counterintuitive
quantum phenomenon, in which resonantly interacting
three bosons form an infinite series of three-body bound
states even if the interaction is too weak to support a two-
body bound state [1]. This Efimov effect emerges in a wide
range of systems including identical bosons [1], mass-
imbalanced fermions [2,3], particles in mixed dimensions
[4], nucleons [5], magnons [6], and macromolecules such
as DNA [7]. Besides its universality, the Efimov spectrum
exhibits a discrete scale invariance, which implies that the
energy eigenvalues of the trimers are related to one another
by a universal scaling factor of 22.72. This peculiar property
provides a unique example of a renormalization-group (RG)
limit cycle [8], which refers to a periodic behavior of a
RG flow and had been elusive until the emergence of the
Efimov effect. Because of the universality and uniqueness,
the Efimov effect has been extensively studied in various
fields of physics such as atomic, chemical, nuclear, and
particle physics. In particular, experimental observations
of the Efimov effect in ultracold atoms [9–14] have given
an enormous impetus to the development of Efimov
physics.
Among discoveries in recent ultracold atom experi-

ments is the universality in the three-body parameter κ�
(or equivalently the scattering length a− at the triatomic
resonance) [15–17], which sets the energy scale of the
lowest-lying Efimov state (see Fig. 1). While low-energy
two-body observables are universally described by the
s-wave scattering length a, the existence of Efimov states
implies an additional dependence of the low-energy three-
body observables on the three-body parameter, which
encapsulates short-range details of the three-body physics
and had therefore been considered to be nonuniversal.
Recent experiments in ultracold atoms, however, have
revealed that a− takes on almost the same value when
measured in units of the van der Waals length rvdW for

different atomic species, internal states, and Feshbach
resonances, suggesting some underlying physics that
makes such an agreement possible. Recently, it was
suggested [18–21] that systems other than the atomic
van der Waals systems such as nuclear systems fall into
a similar universality class if the three-body parameter is
measured in units of the effective range that characterizes
the range of interactions. It has been shown [21] that for
each of two different classes of deep two-body potentials,
the three-body parameter measured in units of reff has a

FIG. 1 (color online). Energy spectrum of three-identical
bosons with resonant interaction (not to scale). The abscissa
shows the inverse s-wave scattering length a−1, and the ordinate
shows the square root of the energy eigenvalue multipled by its
sign. The Efimov states are related to one another by the universal
scaling factor of e2π=s0 ≃ 22.72 with s0 ≃ 1.00624. The three-
body parameters that set the energy scale of the lowest-lying
Efimov state are labeled here as a− and κ�. Here, a− denotes the
s-wave scattering length at the triatomic resonance and κ� is the
binding wave number of the lowest-lying Efimov state at
unitarity. They are uniquely related to each other.
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universal value; especially, for potentials decaying faster
than 1=r6, the three-body parameter falls within a universal
window of κ�reff ¼ 0.44–0.52.
In this Letter, we address an as yet unexplored funda-

mental question: Does this experimentally found and
numerically vindicated universality bring about a new
universality in the renormalization-group limit cycle?
We answer this question in the affirmative by focusing
on identical bosons at the unitarity limit a ¼ �∞.
Furthermore, how topological properties of a renormaliza-
tion-group flow can be related to universal aspects of
few-body physics is an intriguing but so far untapped
problem. We will touch upon this point at the end of
this Letter, taking four-body physics as an illustrative
example.
Most previous RG analyses [22–24] of the Efimov effect

have been limited to the zero-range model VzðrÞ ¼ gδðrÞ,
in which κ� is treated as an input parameter, precluding
any statement about its universality. Since the finite-range
effect plays an essential role in this universality, we should
extend the RG analysis to systems with finite-range
interactions. In previous works, the zero-range model
was adopted to discuss the limit cycle; however, it predicts
the periodic RG flow not only in the infrared limit but also
in the ultraviolet limit, which indicates the unphysical
Thomas collapse [25].
In contrast, since we are interested in the universality of

the three-body parameter, in which a finite-range nature
of the interaction plays a crucial role [18–21], we have
performed a functional renormalization-group (FRG)
analysis for different Hamiltonians with various finite-
range interactions. We have obtained exact RG flows for
the three-body coupling constant, which is defined as a
dimensionless particle-dimer scattering amplitude (see
Fig. 2). We have found that, in contrast with the zero-
range model, each RG flow starts at a point away from the
limit cycle and exhibits characteristic behavior that depends
on the short-range details of each individual interaction
potential; however, in the infrared regime, the flow
begins to show the limit-cycle behavior, the onset of which
is found to give a universal value of k�reff ¼ 0.49ð4Þ,
which lies in the universal “window” of the three-body
parameter κ�reff ¼ 0.44 − 0.52 [21]. We here used the
same definition of the effective range reff as in
Ref. [21]. The onset k� is evaluated as the RG scale at
which the first divergence of the coupling constant occurs.
By using the relation κ�a− ¼ 2.13 [26], we obtain
a− ¼ −4.3ð3Þreff , corresponding to a− ¼ −11.8ð9ÞrvdW
in units of the van der Waals length rvdW, in good
agreement with the experimental results a− ¼
−9.5ð4ÞrvdW [15], −9.7ð7ÞrvdW [16], −10.9ð7ÞrvdW [17].
We, thus, identify the universality of the onset of the
limit cycle with that of the three-body parameter. We
note that the nonperturbative nature of the FRG has
played a decisive role in revealing this relation, since we

have to deal with a diverging coupling constant, which
the perturbative Wilsonian RG cannot deal with. It is
striking that the geometrical property (i.e., the onset
point) of the limit cycle can be related to the universality
of the three-body parameter in the Efimov physics. This
observation can be further generalized to the topological
constraint of the limit-cycle behavior on the relationship
between an Efimov state and its four-body companions as
we discuss later.
It has been pointed out that the three-body parameter

deviates from the universal value for narrow Feshbach
resonances [27–29] and that a deviation from the universal
scaling occurs for deep Efimov states [27]. The former
occurs because closed-channel molecules are not fully
gapped and their dynamics cannot be disregarded; thus,
a two-channel model description is essential. Concerning
the latter, the scaling factor between the lowest and
second-lowest lying Efimov states obtained from our
calculation is 22.8(4), which is consistent with the value
of 23.04 obtained in Ref. [27] within the accuracy of our
calculation.
We now present our theoretical framework for obtaining

these results. To perform an exact RG analysis on finite-
range interactions, we use a simple microscopic model
that accurately reproduces pair correlations of model
interaction potentials and can be solved exactly for three
particles. We use a separable-potential model whose
interaction Hamiltonian is written in the form of a
projection operator V̂f ¼ ξjχihχj, which retains the sim-
plicity of the zero-range (δ function) interaction
V̂z ¼ gjr ¼ 0ihr ¼ 0j. The microscopic action for identical
bosons is then written as
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FIG. 2 (color online). Exact RG flows of the three-body
coupling constant g3. The abscissa shows the logarithm of the
RG scale lnðkreffÞ in units of the effective range reff , and the
ordinate shows the three-body coupling constant g3. Different
curves correspond to different interaction potentials: Gaussian
(circle), van der Waals (diamond), Yukawa (triangle), and square-
well (square) potentials. The universal onset point of the limit
cycle coincides with the universal value of the three-body
parameter κ�reff ¼ 0.49.
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0ÞψðQ2ÞψðQ1Þ; ð1Þ

where Q denotes the four momentum consisting of
Matsubara frequency q0 and momentum q, μ is the
chemical potential, χðqÞ≔hqjχi in momentum repre-
sentation, ψ denotes the bosonic field, and

R
Q ¼R ðdq0d3q=ð2πÞ4Þ. Throughout this Letter, we employ

the units ℏ ¼ kB ¼ 2m ¼ 1, where kB is the Boltzmann
constant and m is the mass of the particle.
We can choose an appropriate jχi of V̂f so that V̂f

reproduces the low-energy pair correlation, including a
nonzero range, of model potentials. This approximation can
be systematically developed with arbitrarily high accuracy
by adding another projection term to V̂f [30]. The con-
struction procedure of jχi is described in Refs. [21,30].
Despite its simplicity, χðqÞ reproduces two-body observ-
ables, including phase shifts and bound-state energies, of
exact model potentials with high accuracy. Here we use
four different types of the separable models: van der Waals,
Yukawa, infinite square-well, and Gaussian models, which
are available in Refs. [20,21].
On the basis of this model, we perform an exact

RG analysis based on FRG, which provides a nonpertur-
bative RG scheme dealing with strongly correlated sit-
uations as Efimov physics. We start from the Wetterich
equation [31],

∂kΓk½ψ ;ψ�� ¼ 1

2
Tr ~∂k ln

�
δ2Γk

δψðqÞδψ�ðqÞ þ RkðqÞ
�
; ð2Þ

where Γk is the one-particle irreducible (1PI) effective
action of the scale-dependent action Sk ¼ SþR
Q RkðqÞψ�ðQÞψðQÞ and reduces in the ultraviolet limit
k ¼ Λ to the microscopic action S and in the infrared
limit k ¼ 0 to the usual effective action Γ, defined as the
Legendre transform of the Schwinger functional. The
symbol Tr implies the sum over momenta, Matsubara
frequencies, and internal indices. The symbol ~∂k acts
only on the Litim’s optimized regulator [32] RkðqÞ≔
ðk2 − q2ÞΘðk2 − q2Þ, where Θ is the unit-step function.
To deal with the RG flow of the three-body coupling
constant, we perform a vertex expansion [33] of Eq. (2)
with respect to the field variables to derive the RG
equations for 1PI vertices,

Γk ¼
X∞
n¼0

1

ðn!Þ2
Z

K1 ;…;Kn
K0
1
;…;K0n

Γð2nÞ
k ðK1;…; Kn;K0

n;…; K0
1Þ

× δðK1 þ � � � þ Kn − K0
n − � � � − K0

1Þ
× ψ�ðK1Þ � � �ψ�ðKnÞψðK0

nÞ � � �ψðK0
1Þ; ð3Þ

where Γð2nÞ
k is the 2nth-order 1PI vertex, which represents

the correlation of n particles. Since we are interested only
in the three-body physics, we have only to consider terms
up to n ¼ 3. Indeed, the exact RG flow equations are
closed up to n ¼ 3 since in the vacuum limit (i.e., the
limits of diverging inverse temperature β → ∞ and the
vanishing number density of particles n → 0), the physics
of four or more number of particles does not affect the
three-body physics [34]. In other words, in the vacuum
limit, the diagrams containing particle-hole loops vanish
because of the infinitely large chemical potential, which
leads to decoupling of higher-order vertices from lower-
order ones, allowing an exact treatment of the RG
equations.
We first consider one- and two-body sectors, which

renormalize the three-body coupling constant. The exact
RG equations in the vacuum limit for one- and two-body
sectors are depicted in Figs. 3(a) and 3(b), respectively.
Noting the ultraviolet boundary condition Γk ¼ S(k ¼ Λ),
we find that the one-body sector is given as

Γð2Þ
k ðPÞ ¼ ip0 þ p2 − μ; ð4Þ

which is consistent with the fact that the self-energy
correction is absent in the particle vacuum. Because of
the separate dependence on the relative momentum of the
separable model, the two-body sector can be decomposed
into the total-momentum and the relative-momentum parts
as depicted in Fig. 3(c), providing an analytical solution as
follows:

Γð4Þ
k ðP;P1; P2Þ ¼ χ�ðp2ÞΓS

kðPÞχðp1Þ; ð5Þ

FIG. 3. Diagrammatic representations of the exact FRG equa-
tions for (a) the one-body sector and (b) the two-body sector. The
derivative ~∂k acts only on a regulator which is contained in the
internal propagator. (c) Decomposition of the four-point 1PI vertex
into the total-momentum and the relative-momentum parts.
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−
1
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Z
d3l
ð2πÞ3

ip0 þ p2

2
− 2μþ Rkðp2 þ lÞ þ Rkðp2 − lÞ

½ip0 þ p2

2
þ 2l2 − 2μþ Rkðp2 þ lÞ þ Rkðp2 − lÞ�2l2

jχðlÞj2; ð6Þ

where a is the s-wave scattering length.
The three-body sector can then be solved numerically

based on these analytical expressions. Following Ref. [35],
we decompose the six-point 1PI vertex as described in
Fig. 4(a). The exact RG flow equation for the three-body
sector can then be analytically integrated with respect to k,
resulting in a simple form as depicted in Fig. 4(c). We note
that in the infrared limit k ¼ 0, this integrated RG equation
reduces to the Skornyakov-Ter-Martirosyan equation [36]
for the separable model. Since we are only interested in the
spatially isotropic s-wave component, which is relevant for
Efimov physics, we make a projection onto Tkðp; qÞ≔R
dθpqTkðP0

onshell ¼ 3μ;p;qÞ, and define the dimensionless
three-body coupling constant g3 as a rescaled particle-
dimer scattering amplitude:

g3≔k2Tkðp ¼ 0; q ¼ 0Þ: ð7Þ

By solving the exact RG equation of the three-body
coupling constant for the four different types of interpar-
ticle interaction numerically, we obtain Fig. 2. We can
see that the RG flows for four different potentials show
the interaction-dependent behavior at high energy; how-
ever, in the infrared regime, flows converge to the limit
cycle. The average onset point of the limit cycle is
evaluated to be kreff ¼ 0.49ð4Þ ¼ ∶k�reff in excellent
agreement with the universal three-body parameter.
Specifically, we have obtained kreff ¼ 0.53ð2Þ for van
der Waals, kreff ¼ 0.49ð5Þ for square well, kreff ¼
0.48ð5Þ for Yukawa, and kreff ¼ 0.44ð5Þ for Gaussian
models, all of which agree with the values of the three-
body parameter obtained in Ref. [21]. This observation
suggests that the universality of the three-body parameter

can be understood from the RG point of view as the
universality of the onset of the limit cycle, which provides
the first example relating the geometrical aspect of the limit
cycle to the universal property of few-body physics. Our
result also suggests that the three-body parameter can be
regarded as the energy scale below which the universal
discrete scale invariance of the system emerges. Below
the energy scale set by κ�, we find a convergence of the
three-body coupling constant g3, which is defined through
the particle-dimer scattering amplitude [see Eq. (7)]. This
convergence strongly suggests that, below the energy scale
of κ�, the three-body correlation function takes roughly
the same (discrete-scale-invariant) form irrespective of
short-range details of the Hamiltonian.
In this Letter, we have connected the missing link

between the two universalities of Efimov physics, namely,
the universal discrete scaling of the energy spectrum
and the universal three-body parameter, by demonstrating
that the renormalization-group limit cycle starts at a
universal point, regardless of short-range details. An
intriguing extension of the present work is to relate
topological aspects of the limit cycle with universal proper-
ties of few-body physics. For example, when four identical
bosons interact via a resonant interaction, two four-body
bound states universally appear associated with one Efimov
state exhibiting a universal scaling [37,38]. We may relate
these universal four-body bound states with a topological
aspect of the RG limit cycle. The previous RG analysis of
four-body physics has shown that the four-body coupling
constant g4 forms a closed RG limit cycle, which is solely
induced by the limit cycle of the three-body coupling
constant g3 [39]. From this result we suggest that if we
constitute a torus of the g3-g4 space by enclosing the space

FIG. 4. (a) Decomposition of the six-point 1PI vertex, which
describes the three-body scattering process. The double lines and
the shaded vertices are the same as in Fig. 3(c). The curly brackets
mean symmetrization with respect to external lines. (b) Definition
of the particle-dimer scattering amplitude Tk represented as a
square vertex. (c) Integral form of the exact FRG equation for the
three-body sector. Integration of the RG equation with respect to
the cutoff scale k has been analytically performed.

FIG. 5 (color online). Schematic illustration of the limit cycle
on the space of the three- and four-body coupling constants g3
and g4. A torus of g3-g4 space can be constructed by enclosing the
space periodically. The limit cycle winds twice in the g4 direction
as it winds once in the g3 direction. This reflects the fact that each
Efimov state is associated with two four-body bound states
[37,38]. We suggest that such a nontrivial topology of the limit
cycle may support the robustness of the number of bound states
against a continuous change of the Hamiltonian.
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periodically, the closed limit cycle winds twice on the torus
as schematically illustrated in Fig. 5. Since the winding
number of the limit cycle on the torus is topological, we
may conclude that the number of four-body bound states is
a topological winding number regardless of the details of
interparticle interactions. This may afford a fundamental
example that relates a topological property of a limit cycle
to a universal property of few-body physics with discrete
scale invariance.
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