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In the standard diffusive picture for transport of cosmic rays (CRs), a gradient in the CR density induces
a typically small, dipolar anisotropy in their arrival directions. This is being widely advertised as a tool
for finding nearby sources. However, the predicted dipole amplitude at TeV and PeV energies exceeds the
measured one by almost 2 orders of magnitude. Here, we critically examine the validity of this prediction,
which is based on averaging over an ensemble of turbulent magnetic fields. We focus on (1) the deviations
of the dipole in a particular random realization from the ensemble average, and (2) the possibility of a
misalignment between the regular magnetic field and the CR gradient. We find that if the field direction
and the gradient direction are close to ∼90°, the dipole amplitude is considerably suppressed and can be
reconciled with observations, which sheds light on a long-standing problem. Furthermore, we show that the
dipole direction in general does not coincide with the gradient direction, thus hampering the search for
nearby sources.
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Cosmic rays (CRs) with energies between hundreds of
MeV and at least a few PeV are commonly believed to be
of Galactic origin. In the standard picture, the high degree
of isotropy in their arrival directions is interpreted as
evidence for diffusion that provides the necessary mecha-
nism for efficiently randomizing their directions. On the
other hand, in the case of a not perfectly symmetric
distribution of sources with respect to the observer, a small
degree of anisotropy, to first order a dipole in the arrival
direction of cosmic rays, is to be expected. In particular, a
(few) nearby source(s) can have a dominant effect on the
distribution of arrival directions, which is why the obser-
vation of a dipole anisotropy has been advertised as a
means of discovering these nearby sources [1–3]. Lately,
this idea has gained currency in the context of finding the
necessarily nearby (because of cooling losses) source(s) of
high-energy electrons and positrons [4–6], which is (are)
causing the rise in the positron fraction [7–9].
Given the high degree of isotropy, a perturbative approach

is adopted in CR transport models, expanding the phase
space density fðr;p; tÞ into an isotropic part f0ðr; p; tÞ and
a small correction f1ðr;p; tÞ. f1ðr;p; tÞ is then related to the
gradients of f0ðr; jpj; tÞ, the momentum gradient leading
to the well-known Compton-Getting effect [10]; here, we
focus on the spatial gradient. In a simple model of isotropic
diffusion, the amplitude a of the dipole anisotropy, the
relative difference between the fluxes in the maximum and
minimum directions ϕmax and ϕmin, computes as [11]

a ¼ ϕmax − ϕmin

ϕmax þ ϕmin
¼ 3D

v
j∇f0j
f0

; ð1Þ

where D is the (local) spatial diffusion coefficient and v ≈ c
is the CR speed. The dipole direction is opposite to that of

the CR gradient. For a given distribution of sources and
extrapolating the diffusion coefficients measured through
secondary-to-primary ratios like B=C at gigavolt to teravolt
rigidities, one can first compute the CR density f0 and
through Eq. (1), the dipole amplitude. The rigidity depend-
ence of the dipole amplitude results from both D and
j∇f0j=f0.
Over the last decades, a large set of measurements of the

dipole anisotropy has been accumulated at energies above a
few TeV mostly from extensive air shower arrays [12–22].
The dipole amplitude decreases from ∼10−3 at 10 TeV to

FIG. 1 (color online). The dipole anisotropy in the arrival
directions of CRs, as predicted by an isotropic diffusion model
[25] (dotted line) and measured by a variety of experiments
[12–22]. The black filled circles, connected by solid lines, mark
the dipole anisotropy predicted in five random realizations of the
turbulent magnetic field and assuming a misalignment between
the background magnetic field and CR gradient close to 90°.
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∼10−4 between 100 TeV and 1 PeV before it increases
again. Here, we limit ourselves to energies below a few PeV
where CRs are certainly of Galactic origin and where the
composition is predominantly p and He. We show these
measurements together with the prediction from a simple
diffusion model in Fig. 1. It is evident (as has been known
for a while [23,24]) that the diffusion model overpredicts
the dipole amplitude by almost 2 orders of magnitude
around 1 PeV.
This apparent discrepancy, dubbed the “CR anisotropy

problem,” has led to various modeling attempts. For
example, it was pointed out that the point- and transientlike
nature of CR sources, like supernova remnants, leads to
fluctuations for different positions and periods of obser-
vations [24]; however, it has been shown by Monte Carlo
methods [25–27] that even under favorable conditions an
observation position or period in agreement with the
measured dipole amplitude is unlikely. Furthermore, it
has been suggested that the CR gradient would be smaller
than usually predicted if the diffusion coefficient were
allowed to spatially correlate with the sources of turbulence
in the interstellar medium [28], e.g., supernova remnants,
instead of being assumed to be constant. However, while
this can alleviate some of the tension at hundreds of GeV,
the predicted anisotropy at hundreds of TeV is still more
than an order of magnitude too large.
It is instructive to revisit the derivation of Eq. (1) to

investigate which assumptions need to be relaxed in order
to reconcile the predicted dipole amplitude with measure-
ments. For this, we adopt the framework of quasilinear
theory [29] in which the magnetic field B ¼ B0 þ δB is
the sum of a regular field B0 and a turbulent field δB
with δB2 ¼ R

d3kδB2ðkÞ ≪ jB0j2, and the turbulent field
is evaluated along unperturbed trajectories. (The dipole
anisotropy can also be computed in a more general
framework (see, e.g., Ref. [30]), however, at the expense
of not predicting the scattering rate from first principles.)
Without loss of generality, we take B0 to point into the x
direction, which is also defining the pitch angle μ ¼ px=p
of a particle of momentum p ¼ ðpx; py; pzÞT . Under addi-
tional assumptions (e.g., after gyrophase averaging, see,
e.g., Ref. [11] for details) the ensemble averaged distribu-
tion function can be expanded into an isotropic part
and a pitch-angle dependent part: f̄ðr;p; tÞ ¼ f0ðr; p; tÞþ
f1ðr; p; μ; tÞ. The first moment of the anisotropic part then
determines the dipole amplitude (along the regular field)

a ¼
3
2

R
1
−1 dμμf1ðμÞ

f0
¼ 3

v
j∂f0=∂xj

f0
D∥: ð2Þ

Here, D∥ ¼ Dxx is the parallel diffusion coefficient [31].
The derivation of Eq. (2) reveals two important limi-

tations. First, the amplitude of the dipole anisotropy is an
ensemble average, much like the underlying distribution
function F is the average for the Gaussian random field δB.

For propagation on Galactic scales, this is commonly
justified by assuming ergodicity: for propagation times
t ≫ L2=D, where L ∼ 100 pc is the outer scale of turbu-
lence in the interstellar medium (ISM), CRs from sources at
kiloparsec distances will experience many different field
configurations before observation. However, what is
observed is not the time-averaged distribution function,
but just a snapshot, which, as we will see, is affected by the
(local) realization of δB. (Also, note that typical observa-
tion times are shorter than the coherence time of the
magnetic field turbulence.) The effect of the local field
configuration was recently considered in the context of
observed small scale anisotropies [30,32]. In particular, it
was shown that the local δB is leading to nondiffusive
behavior, dynamically generating and destroying correla-
tions on all angular scales within a few scattering times
τsc [30].
Second, Eq. (2) stresses the anisotropic nature of

diffusion in the ISM and the possibility of misalignment
between the CR gradient ∇f0 and the regular field B0.
For the case of a perfect misalignment of ∇f0 and B0, the
amplitude of the ensemble averaged dipole vanishes. In
the absence of deviations from the ensemble average, this
would already solve the CR anisotropy problem.
To investigate the interplay between these two effects,

i.e., the deviation from the ensemble average in specific
(local) realizations of δB on the one hand and the possible
misalignment between ∇f0 and B0 on the other hand, we
employ a numerical simulation of the transport of charged
particles through a turbulent magnetic field. Specifically,
we backtrack particles; i.e., we follow particles of opposite
charge backwards in time, injecting them in the opposite
direction from which they would be observed. For observed
directions ni ¼ pif0g=p and positions rið0Þ ¼ 0 we
obtain a set of backtracked trajectories, f(riðtÞ;piðtÞ)g.
With these, and due to Liouville’s theorem, we can
compute the flux at t ¼ 0, r ¼ 0 in the direction ni from
a given phase space density at an earlier time −T < 0,
fðri(0Þ;pið0Þ) ¼ f(rið−TÞ;pið−TÞ).
The relativistic equations of motion for charged particles

are solved with a fifth order adaptive Runge-Kutta algo-
rithm [33] and we consider particles with rigidities of 10,
100, and 1000 TV, neglecting the finite energy resolution of
the experimental data. The level of turbulence η≡
δB2=ðδB2 þ B2

0Þ is very uncertain, especially in the local
ISM. On large scales, Faraday rotation measurements point
to regular fields as low as B0 ≃ ð1.4� 0.2Þ μG, which
with a total field of 6 μG (from equipartition)
gives η≃ 0.96 [34]. On the other hand, to reproduce the
grammage inferred from nuclear secondary-to-primary
ratios, a much smaller η≲ 0.02 would be needed [35].
To bracket these vastly different estimates (and to ease
comparison with other numerical studies [36,37]) we adopt
two values: η ¼ 1 and 0.1. The turbulent field is computed
on a set of nested grids [36] with a Kolmogorov spectrum,
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an outer scale L ¼ 100 pc, and a total (rms) field strength
of 4 μG. We have checked that averaging over many
different realizations of δB we recover diffuse behavior.
In particular, adopting the parameters of Refs. [36,37] we
reproduce the inferred pitch-angle scattering times and
diffusion coefficients.
We have confirmed that our computation reproduces the

expected anisotropies at t ¼ 0 for different combinations of
(in)homogeneous and (an)isotropic distribution functions at
t ¼ −T. Trivially, a homogeneous and isotropic phase
space density at −T leads to no anisotropy. A homogeneous
distribution of dipoles at −T leads not only to a dipole but
also to power for larger multipole moments l, all of which
are eventually decaying exponentially with a time constant
τsc=lðlþ 1Þ [30]. The scenario we are most interested in
here is an initial gradient in the phase space distribution: after
a few τsc, the distribution of arrival directions converges,
irrespective of the initial angular distribution. We observe
anisotropies extending to the highest multipoles allowed by
our angular resolution, which are eventually all powered by
the spatial gradient in the initial distribution function.
Every spatial distribution at times −T can be expanded

into a spatially homogeneous part, a gradient, and higher
derivatives. We assume that the higher derivatives are
subdominant and adopt the (ensemble averaged) gradient
from the diffusion model. We read off this gradient for
the average source distribution from Fig. 2(a) of Ref. [25]
adopting their parametrization of the diffusion coefficient
measured from B=C.
We start by presenting our results for the case of isotropic

turbulence without a regular field, i.e., η ¼ 1. In Fig. 2,
we show the dipole directions by the black circles, obtained
for 50 random realizations of the magnetic field, a CR
gradient in ðlong; latÞ ¼ ð90°; 0°Þ, and 1 PV particles.
There is considerable scatter in the dipole directions around
the predicted value from the diffusion model (indicated
by the green diamond). The mean dipole of the 50 random
realizations (indicated by the red square), however, repro-
duces the predicted dipole very well. There is also scatter in
the amplitudes of individual dipoles, and on average their
amplitude is larger than that of the predicted dipole. This
is also shown in Fig. 3, where we have varied the direction
of the CR gradient: each vertical slice is a (normalized)
histogram of the distribution of the dipole amplitudes.
The red (green) line marks the average amplitude from the
50 random realizations (the predicted amplitude from the
isotropic diffusion model) corresponding to the sizes of
the red square (green diamond) in Fig. 2. As expected there
is no preferred direction. At the same time, while there is
some scatter around the predicted dipole amplitude, it is too
little to explain the small experimental upper limit and
measurement of a few times 10−4.
The results for the case with a strong regular

field differ significantly. Although ∇f0 is still at
ðlong; latÞ ¼ ð90°; 0°Þ, the dipole directions now cluster

around the B0 direction, which is at ðlong; latÞ ¼ ð0°; 0°Þ,
see Fig. 4. It is also apparent that for this misalignment
the amplitudes are markedly suppressed. While this was
already expected for the ensemble averaged dipole, see
Eq. (2), there is considerable scatter, both in amplitude and
in direction. We emphasize that this is due to the random
nature of δB, which is not accounted for in Eq. (2), and that
the dipole is likely in the direction of the totalB as sampled
by the CR trajectories. In Fig. 5, we show the distribution of

FIG. 2 (color online). Sky map of dipole directions in 50
random realizations of the local turbulent magnetic field (η ¼ 1)
at 1 PV. The center and radius of each black circle shows the
dipole direction and amplitude in one random realization,
respectively. The yellow star shows the direction of the assumed
CR gradient, the green diamond the predicted value from an
isotropic diffusion model, and the red square the average of the 50
magnetic field configurations.

FIG. 3 (color online). The distribution of dipole amplitudes as a
function of the longitude of the CR gradient at 1 PV for η ¼ 1.
Each vertical slice is the normalized histogram for a gradient
direction. We also show the median (orange dashed line) and
amplitude of the (vectorial) mean (red solid line), together with
the prediction for isotropic diffusion (green dashed line). The
cyan solid line and gray band show the KASCADE upper limit
and the EAS-TOP measurement at ∼1 PeV, respectively.
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dipole amplitudes as a function of longitude of ∇f0 (here,
that is the angle between ∇f0 and B0). The distribution
shows the expected cosine behavior and for most angles the
scatter is small. For near-to-perfect misalignment, however,
we find that the majority of random realizations have
a dipole amplitude below the KASCADE upper limit and
of order 20% are consistent with the EAS-TOP 2003
measurement.
In Fig. 1, we have shown the dipole amplitudes for five

random field realizations at 10 TeV, 100 TeV, and 1 PeV
(assuming protons) for an angle ∼90° between the CR
gradient and regular field. We note that while for three
random realizations the amplitudes increase with energy as
expected, the other two show nontrivial energy depend-
ences, one even closely tracing the experimentally observed
decline and rise from 10 to 100 TeV and on to 1 PeV. This
nonstandard energy dependence is evidence of particles
of different rigidities sampling different parts of the local
turbulent field.

One might wonder how a possible energy dependence
of the gradient direction would affect our results. First,
we note that to achieve the necessary suppression, the CR
gradient and the regular magnetic field need to be
perpendicular only to within ∼10° (see Fig. 5). Second,
it has been shown in computations of the CR gradient that
its direction is relatively stable; i.e., it varies by less than
10° for a relatively wide range of energies [25]. Therefore,
even with finite energy resolution the suppression of the
dipole can be maintained for energies between ∼1014 and
1015 eV, whereas outside this interval the misalignment
could be less severe, thus causing less suppression of the
dipole amplitude.
To a certain degree, the rigidity-dependent sampling of

the magnetic field could also cause the rise in anisotropy
above a few PeV, which seems to be observed in earlier
measurements [13,14]. (We caution, however, that contem-
porary experiments, e.g., Ref. [12], have so far only placed
upper limits.) After a few scattering times, particles of
rigidityRPevPeV cover on average distances of a few timesffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D∥τsc

p ≃ 100q−1pcðδB=B0Þ−2ðRPV=B0;μGÞ2−q (here,
q ¼ 5=3 is the Kolmogorov spectral index). With the
parameters adopted above for the η ¼ 0.1 case, this
computes as a few hundred parsecs at 1 PV and more
than doubles with every decade in rigidity. Therefore, at
higher rigidities a larger part of the turbulent field is being
sampled, with the large-scale modes (1=k ≪ rL) effectively
contributing to the background field. This already leads to
the nonstandard rigidity dependence for the energy range
shown in Fig. 1, but as the amplitude of the turbulent
modes grows with scale, this effect is expected to get
stronger with rigidity. Furthermore, in numerically comput-
ing the trajectories of CRs, we have neglected the pos-
sibility of escape from the CR halo, which is only valid if
the distances travelled are much smaller than the size of
the CR halo. Beyond petavolt rigidities, this assumption
breaks down, which will lead to a higher anisotropy
amplitude. Finally, at even higher rigidities, the gyroradius
approaches the scale of variations in B0, such that gradient
and curvature drifts cannot be neglected anymore, leading
to additional contributions to the anisotropy. We leave a
detailed study of these effects to future work.
Our conclusions are twofold. First, it is not possible to

determine the direction of the CR gradient (and thus the
direction of the closest, dominant source or the bulk of
sources) from the dipole direction: for strong turbulence,
there is considerable scatter between the CR gradient and
the dipole directions in random realizations; for weak
turbulence, the dipole directions scatter around the regular
field direction rather than around the CR gradient. Second,
the small observed dipole amplitudes between ∼100 TeV
and 1 PeV can be understood in the presence of a strong
regular field only if the CR gradient and the regular field
are almost maximally misaligned. This opens up the
possibility of determining the direction of the regular

FIG. 4 (color online). Same as Fig. 2, but for a small turbulent
field on top of a regular field (η ¼ 0.1), indicated by the blue cross.

FIG. 5 (color online). Same as Fig. 3, but for a small turbulent
field on top of a regular field (η ¼ 0.1).
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magnetic field, if the CR gradient could be reliably
predicted or determined by other means, e.g., diffuse
gamma-ray backgrounds [38]. We conclude by noting that
in a similar way that the dipole depends on the regular
field direction, the higher multipoles of the arrival direction
encode information about the higher moments of the
(turbulent) local magnetic field. While it is computationally
very challenging to solve the inverse problem of inferring
the latter from the former, observations of CR arrival
directions might soon prove one of the most valuable
probes of the nearby Galactic magnetic field.
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