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Nonlocality enables two parties to win specific games with probabilities strictly higher than allowed by
any classical theory. Nevertheless, all known such examples consider games where the two parties have a
common interest, since they jointly win or lose the game. The main question we ask here is whether the
nonlocal feature of quantum mechanics can offer an advantage in a scenario where the two parties have
conflicting interests. We answer this in the affirmative by presenting a simple conflicting interest game,
where quantum strategies outperform classical ones. Moreover, we show that our game has a fair quantum
equilibrium with higher payoffs for both players than in any fair classical equilibrium. Finally, we play the
game using a commercial entangled photon source and demonstrate experimentally the quantum
advantage.
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Nonlocality is one of the most important and elusive
properties of quantum mechanics, where two spatially
separated observers sharing a pair of entangled quantum
bits can create correlations that cannot be explained by any
local realistic theory. More precisely, Bell [1] showed that
there exist scenarios where correlations between any local
hidden variables can be shown to satisfy specific con-
straints (known as Bell inequalities), while these constraints
can nevertheless be violated by correlations created by
quantum systems.
An equivalent way of describing Bell test scenarios is in

the language of nonlocal games. The best-known example
is the CHSH game [2]: Alice and Bob, who are spatially
separated and cannot communicate, receive an input bit x
and y, respectively, and must output bits a and b, respec-
tively, such that the outputs are different if both input bits are
equal to 1, and the same otherwise. It is well known that the
probability over uniform inputs that they jointly win this
game when they a priori share classical resources is 0.75,
while if they share and appropriately measure a pair of
maximally entangled qubits, they can jointly win the game
with probability cos2 π=8 > 0.75. The classical value 0.75
corresponds to the upper bound of a Bell inequality and the
CHSH game provides an example of a Bell inequality
violation, since there exist quantum strategies that violate
this bound.
Looking at Bell inequalities through the lens of games

has been very useful in practice, including in cryptography
[3,4] and quantum information [5], where, for example,
quantum mechanics offers stronger than classical security
guarantees in quantum key distribution or verification

protocols. Recently, Brunner and Linden made the con-
nection between Bell test scenarios and games with
incomplete information more explicit and provided exam-
ples of such games where quantum mechanics offers an
advantage [6]. A game with incomplete information (or
Bayesian game) is a game where the two parties receive
some input unknown to the other party [7]. We remark that
without more restrictions, quantum mechanics only offers
advantages for incomplete information games, i.e., when
the parties receive inputs or, in other words, when there are
more than a single measurement setting for each party [8].
There are two general types of games depending on

whether the interests of the players are common or con-
flicting [9]. A typical example of common interest games is
when the drivers of vehicles decide onwhich side of the road
they will drive. When they both decide to drive on the same
side, they win 1 point, while when they decide on different
sides, they lose 1 point (because they crash their cars). In this
game, it is easy to see that the outcomes “both drive on the
right” and “both drive on the left” are equilibria, meaning
that no party can increase their payoff by deviating unilat-
erally. Moreover, both players equally prefer each of the
equilibria; hence, there is no conflict on which one to
choose. Another example is the CHSH game, where we can
assume that both Alice and Bob win 1 point if the parity of
their outputs is equal to the logical AND of their inputs, and
they lose 1 point otherwise (see Example 1 in Ref. [6]). In
fact, other known nonlocal games, including the GHZ-
Mermin game [10], the Magic Square Game [11,12], the
HiddenMatching game [13,14], Brunner and Linden’s three
games [6], are all examples of common interest games [15].
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There is a second important type of games, called
conflicting interest games, where the interests of the players
differ. A typical example is the Battle of the Sexes, where
Alice and Bob want to meet on Saturday night, but Alice
prefers the ballet, while Bob prefers the theater. For
example, when they both go to the ballet, Alice wins
2 points and Bob 1, when they go to the theater, Alice wins
1 point and Bob 2, and when they go to different places,
they do not get any points. In this game, the outcomes “both
go to the ballet” and “both go to the theater” are equilibria,
meaning that no party can increase their payoff by deviating
unilaterally. However, each party prefers a different equi-
librium; hence, how can they choose one of them and
resolve the conflict? One way is to provide common advice
from a trusted referee. For example, both parties receive
a uniformly random coin and go to the ballet when the coin
is heads and to the theater when the coin is tails. This
classical strategy with advice is, in fact, a fair, correlated
equilibrium [16].
There have been numerous examples where quantum

mechanics offers an advantage for common interest games,
where the players either jointly win or jointly lose. For
example, in the scenario of device independent key dis-
tribution or randomness extraction, the two boxes that
participate in the Bell test are provided by a common
adversary and they need to coordinate in order to jointly
violate a Bell inequality. In the case of conflicting interest
games, however, it is not a priori clear if such an advantage
can be offered. For example, fundamental cryptographic
games with competing players, such as coin flipping or bit
commitment, remain impossible even in the presence of
quantum resources [17,18].
The main question we address in this Letter is whether

the nonlocal feature of quantum mechanics can indeed
offer an advantage in a scenario where the two non-
communicating parties that participate in a Bell test
scenario have conflicting interests. We can also restate
our question in the language of games: are there conflict-
ing interest games where quantum advice offers an
advantage compared to classical advice? We answer in
the affirmative by presenting a simple incomplete infor-
mation game with conflicting interests, where there exist
quantum strategies with average payoff for the two parties
strictly higher than that allowed by any classical strategy.
Moreover, we show that there exist fair, quantum equi-
libria with strictly higher payoffs than in any classical fair,
correlated equilibrium. This is the first example, to our
knowledge, where the nonlocal feature of quantum
mechanics has been used to resolve a conflict between
two parties in a way that is advantageous for both parties
simultaneously. Finally, the simplicity of our game enables
us to demonstrate experimentally these quantum strategies
using a commercial entangled photon source and confirm
that the average payoff of the players is strictly higher than
classically possible.

The conflicting interest Bayesian game.—We define a
Bayesian game in the two-party framework (for a more
general definition refer to [9]). It is comprised of the
following: (i) Two players, Alice (A) and Bob (B). (ii) A set
X ¼ XA ⊗ XB of pairs of types/inputs x ¼ ðxA; xBÞ, where
xA ∈ XA, xB ∈ XB, which follow a probability distribu-
tion P∶ X → ½0; 1�. (iii) A set Y ¼ YA ⊗ YB of pairs of
actions/outputs y ¼ ðyA; yBÞ, where yA ∈ YA, yB ∈ YB.
(iv) A utility function ui∶ XA × XB × YA × YB → R,
which determines the gain for each player depending on
the types and actions of both players.
In general, the game is played as shown in Fig. 1. Each

player i ∈ fA;Bg acquires a type xi according to the
probability distribution P. We also consider the case where
they receive advice from a source that is independent of the
inputs xi, and that can be classical or quantum. Finally, they
decide on their action or output yi, according to a chosen
strategy. Each player i ∈ fA;Bg is interested in maximiz-
ing his or her average payoff Fi:

Fi ¼
X

ðx;yÞ∈X×Y

PðxÞ Pr ðyjxÞuiðx; yÞ; ð1Þ

where Pr ðyjxÞ is the probability the players choose actions
y ¼ ðyA; yBÞ given their types were x ¼ ðxA; xBÞ and
depends on the advice and the chosen strategies.
In the case of classical advice, we define a correlated

strategy ci∶ X i ⊗ Ωi → Yi, whereΩi is the space of advice
given to player i by the source and the source chooses the
advice r ¼ ðrA; rBÞ from the space Ω ¼ ΩA ×ΩB follow-
ing a probability distribution Q. Given a type xi and advice
ri, player i performs the action yi ¼ ciðxi; riÞ. If both
players follow a correlated strategy c ¼ ðcA; cBÞ, the
average payoff for player i ∈ fA;Bg becomes:

FiðcÞ ¼
X
x∈X
r∈Ω

PðxÞQðrÞui(xA; xB; cAðxA; rAÞ; cBðxB; rBÞ):

FIG. 1 (color online). Bayesian game configuration for
two players.
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A correlated strategy c is a correlated equilibrium [16] if
player i cannot gain a higher payoff by changing his or her
strategy unilaterally.
In the case of quantum advice, we define a quantum

strategy M¼ðA;B;jΨiÞ, with A ¼ ðA0;A1Þ and B ¼
ðB0;B1Þ, that consists of the players applying, respectively,
the observables AxA¼fA0

xA ;A
1
xAg and BxB¼fB0

xB ;B
1
xBg on

the sharedquantumstate or advice jΨi. Theprobability of the
two players outputting y given x, is Pr ðyjxÞ ¼ hΨjMy

xjΨi,
where My

x ¼ AyA
xA ⊗ ByB

xB . The average payoff for player
i ∈ fA;Bg becomes

FiðMÞ ¼
X

x∈X ;y∈Y
PðxÞhΨjMy

xjΨiuiðx; yÞ:

Aquantum strategyM is a quantum equilibrium if no player
can gain a higher payoff by choosing a different strategy
unilaterally.
For each combination of the players’ types, the utility

functions uA and uB can be viewed as a table: the rows
correspond to the actions yA and the columns to the actions
yB. The numbers in each cell are the players’ utilities
(uA, uB) depending on their types and actions. In case the
utilities differ for different types of the two players, then we
need to introduce more than one table.
Our game is a combination of the battle of the sexes

and the CHSH game. The utilities are defined in Table I
depending on the logical AND of the types of the players.
We have normalized the utilities of the game to be in
[0, 1]. The dependence of the utilities on the types is similar
to the CHSH game, where the players need to coordinate,
except for the case where their types are both 1, in which
case they need to anti-coordinate. However, similar to the
Battle of the Sexes, the interests of the players are
conflicting, since whenever at least one type is 0, the first
player prefers the action (0,0) and the second player prefers
the action (1,1). This is in stark contrast to the usual CHSH
game, where the players have a common interest, since
their utilities are always the same. In the following we
consider that the types of the players are chosen uniformly
at random.
Classical strategies.—We start by examining the equi-

libria in the absence of advice. There are three of them, a
fair one, where both Alice and Bob have average payoff
9=16; one where Alice receives 11=16 and Bob 7=16; and a
third one where Alice receives 7=16 and Bob 11=16. It is
clear that this is a conflicting interest game, since Alice

prefers the second equilibrium and Bob the third. Let us
now examine classical correlated strategies, where in the
beginning the source gives to each player advice in the form
of a bit ri drawn from some distribution independent of the
types. Note that since there are only two possible actions
per player, advice longer than a single bit does not increase
the players’ payoffs.
In our setting of classical advice and finite number of

possible strategies, the set of all possible pairs of payoffs
(FA, FB) forms a convex polytope in R2. We can therefore
examine all possible strategies and see that the average
payoff for any player cannot exceed the value 3=4 and,
moreover, the two players cannot have their average payoff
functions achieve their maximum at the same time; when
FA ¼ 3=4, it holds that FB ¼ 3=8 and equivalently the
other way around. We can finally verify that

FA þ FB ≤
9

8
¼ 1.125: ð2Þ

As we mentioned earlier, there exists a fair classical equi-
librium that provides average payoffs FA ¼ FB ¼ 9=16:
in this case, Alice outputs her type and Bob the comple-
ment of his. There also exist several other correlated
equilibria, depending on the probability distribution Q of
the advice, which of course satisfy inequality (2).
Quantum strategies.—We first consider the case where

the two players share a maximally entangled state,
jϕþi ¼ 1=

ffiffiffi
2

p ðj00i þ j11iÞ. Following the analysis of the
CHSH game by Cleve et al. [19], if the players use the
following projective measurements according to their
inputs:

Aa
0 ¼jϕað0Þihϕað0Þj; Aa

1¼
����ϕa

�
π

4

���
ϕa

�
π

4

�����
Bb
0 ¼

����ϕb

�
π

8

���
ϕb

�
π

8

�����; Bb
1 ¼

����ϕb

�
−
π

8

���
ϕb

�
−
π

8

�����
ð3Þ

where a; b ∈ f0; 1g and ϕ0ðθÞ ¼ cos θj0i þ sin θj1i,
ϕ1ðθÞ ¼ − sin θj0i þ cos θj1i, then Pr ðyA; yBjxA; xBÞ ¼
1
2
trðAyA

xA ;B
yB
xBÞ ¼ 1

2
cos2ðπ=8Þ. The average payoff of player

i ∈ fA;Bg is

Fi ¼
1

8
cos2

π

8

X
ðx;yÞ∈X×Y

uiðx; yÞ ¼
3

4
cos2

π

8
¼ 0.64:

For each player, the ratio of the quantum over classical
payoff for the quantum strategy M ¼ ðA;B; jϕþiÞ, is the
same as in the case of the CHSH game, in other words, our
equilibrium corresponds to the Tsirelson bound for the
maximum violation of the CHSH game. We also prove that
M is a quantum equilibrium: to this end, we use semi-
definite programming (SDP) and verify that while keeping

TABLE I. Payoff table depending on the players’ types.

xA ∧ xB ¼ 0 xA ∧ xB ¼ 1

yB ¼ 0 yB ¼ 1 yB ¼ 0 yB ¼ 1
yA ¼ 0 (1, 1=2) (0,0) (0,0) (3=4, 3=4)
yA ¼ 1 (0,0) (1=2, 1) (3=4, 3=4) (0,0)
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one player’s strategy fixed to that defined by M, the
optimal strategy of the other player is indeed the one
prescribed by M. It is important to note that all Bell states
lead to a quantum equilibrium, by appropriately rotating the
measurement bases. We also observe that the strategyM is
fair, since it gives equal average payoffs. The joint payoff
takes the value FA þ FB ¼ 1.28, which implies that, in our
conflicting interest game, there exist fair quantum equilib-
ria where the parties jointly have strictly higher payoff
than in any classical fair, correlated equilibrium. In addi-
tion, when we optimize over all quantum strategies that
achieve fair average payoffs, by ranging over the joint
state and measurement operators, we conclude that the
above equilibrium is the optimal fair quantum equilibrium.
Furthermore, we can find a whole range of quantum
strategies (not equilibria) where the joint payoff of the
players is strictly higher than classically possible. Finally,
we show that these explicit strategies are very close to the
optimal ones, by providing an upper bound that corre-
sponds to the second level of the SDP hierarchy in
Refs. [20–23]. In Fig. 2 we have plotted the classical
bound of inequality (2), quantum strategies that achieve
higher joint payoff, the SDP upper bound for the optimal
joint payoff for any quantum strategy, as well as the
classical and quantum fair equilibria.
Experimental demonstration.—The main component of

the conflicting interest game that we have defined is the
CHSH game. This simple setting allows us to demonstrate
our game in practice using the commercial entangled
photon source QUED by QUTOOLS [24], which generates
polarization entangled photon pairs in the state jϕþi ¼
1=

ffiffiffi
2

p ðjHHi þ jVViÞ at awavelength of 810 nm using type-
I spontaneous parametric down-conversion. For each run of
the game, we measure the polarization of the photons in the

bases defined in Eq. (3), where the measurement settings
(types) are selected using a rotating quarter wave plate and a
polarization filter placed at thepath of eachphotonof the pair.
Detection events are registered using the control and readout
unit of QUED, which includes a twin silicon avalanche
photodiode module and a coincidence counter.
We would like to demonstrate a quantum strategy, such

that the sum of the average payoffs of the two parties for a
single run of the game is strictly higher than classically
possible. For this, we take a large number of independent
runs of the game in order to estimate each player’s average
payoff with high confidence. For each configuration, we
record the single counts for each detector as well as
coincidence counts. We also correct for the accidental
coincidence counts.
We measure the fidelity of the generated state with

respect to the maximally entangled state jϕþi to be equal to
0.925. The obtained violation of the CHSH inequality is
2.645, which corresponds to a probability of winning the
usual CHSH game of 0.83. This is slightly lower than the
maximum probability of success cos2 π=8 ≈ 0.85, and is
due to the imperfect fidelity of our source’s state.
From the registered detection events for the measure-

ment settings (xA, xB), we can compute the probabilities
Pr ðyA; yBjxA; xBÞ, and hence the average payoff functions
for the two players. We find

FA ¼ 0.621; FB ¼ 0.625:

The joint payoff is then FA þ FB ¼ 1.246, which is well
above the classical bound of inequality (2) and slightly
below the maximum value allowed by quantum strategies.
Note that even if we do not correct for the effect of the
accidental coincidences on the detection events, the
obtained payoffs still largely surpass the classical bound.
The experimentally obtained payoff is plotted in Fig. 2,

together with the classical bound and the space of the
average payoffs for the quantum strategies. We also show
the classical and quantum fair equilibria points. Our
implementation demonstrates a payoff that is strictly higher
than that obtained by any classical strategy; however, due to
the nonunit fidelity of our entangled state, this payoff does
not reach the fair quantum equilibrium value.
Our results show that the implementation does not define

a perfectly fair strategy since there is a small difference
between the average payoffs of the two players, which is
due to experimental imperfections. This form of bias can be
eradicated by adding a shared uniformly random bit r0 in
the advice and having the players change their action if
r0 ¼ 1 and proceed normally if r0 ¼ 0. In this case, the
only bias that will be left in the experiment will come from
the random number generator, which can be made vanish-
ingly small.
Discussion.—It is interesting to note that the game that

we have proposed can also be seen as a Bell inequality, the
one coming from inequality (2). The difference between
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FIG. 2 (color online). Comparison of classical and quantum
strategies for the Bayesian game with conflicting interests defined
by Table I. These strategies include the classical and quantum fair
equilibria points. The experimentally obtained payoff is strictly
higher than the classical bound.
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almost all previous Bell inequalities that arise from games
is that in our case the payoff functions of the players are not
equal and hence, the Bell inequality arises only when we
take the average of the two payoff functions and not just
one of them (see also Example 2 in Ref. [6]). One can also
ask what the payoffs are in case the players receive
stronger, nonsignaling correlations. It is straightforward
to see that in this case, the fair equilibrium has an average
payoff of 3=4 for each player.
It would be interesting to find more conflicting interest

games where quantum mechanics offers an advantage, for
example when larger dimensions are used or in a multiparty
setting [25]. Finally, a more general question is whether
every Bell inequality can be transformed into a conflicting
interest game with the same maximal violation.
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