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We show that, quite generically, a [111] slab of spin-orbit coupled pyrochlore lattice exhibits surface
states whose constant energy curves take the shape of Fermi arcs, localized to different surfaces depending
on their quasimomentum. Remarkably, these persist independently of the existence of Weyl points in the
bulk. Considering interacting electrons in slabs of finite thickness, we find a plethora of known fractional
Chern insulating phases, to which we add the discovery of a new higher Chern number state which is likely
a generalization of the Moore-Read fermionic fractional quantum Hall state. By contrast, in the three-
dimensional limit, we argue for the absence of gapped states of the flat surface band due to a topologically
protected coupling of the surface to gapless states in the bulk. We comment on generalizations as well as
experimental perspectives in thin slabs of pyrochlore iridates.
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Introduction.—The prediction [1–5] and subsequent
experimental observation [6,7] of topological insulators
has fundamentally revolutionized the understanding of
electronic states of matter during the past decade [8–10].
New frontiers in this field include gapless topological phases
such as three-dimensional Weyl semimetals [11–15] exhib-
iting exotic Fermi arc surface states [13,15–17], interaction
effects on the gapless surface of topological insulators
[18–22], and strongly correlated phases akin to fractional
quantum Hall states in two-dimensional (2D) lattices (see
Refs. [23,24] and references therein). Drawing additional
inspiration from the rapid development of growth techniques
in fabricating high quality slabs, films, or interfaces of oxide
materials [25], this work provides intriguing connections
between these seemingly disparate frontiers.
The materials pursuit for Weyl semimetals and their

relatives is rapidly broadening [26–29], with spin-orbit
coupled pyrochlore iridates, such as Y2Ir2O7 [13,30–32]
being particularly promising compounds—as these are
favorably grown or cleaved in the [111] direction, and given
their predicted rich variety of strongly correlated phases
[33,34], we here study the surface bands of pyrochlore [111]
slabs, where the system can be seen as a layered structure of
alternating kagome and triangular layers [30] (Fig. 1).
Our work uncovers an intriguing dichotomy between

bulk and surface states which allows us to establish
connections between apparently disparate topological phe-
nomena. While the bulk band structure changes drastically
as a function of the inter-layer tunneling strength t⊥—
including the (dis)appearance of the Weyl semimetal—the
surface states, which involve only the kagome layers,

remain unchanged on account of their essentially geomet-
rical origin. Most saliently, in the two distinct regimes of
N weakly coupled kagome layers, each with unit Chern
number, at small t⊥, and the genuinely three-dimensional
Weyl semimetal at large t⊥, identical surface states carrying
Chern number C ¼ N are localized at opposite surfaces
depending on their momentum. Constant energy contours
in reciprocal space are Fermi arcs, which thus exist also in
the absence of Weyl nodes in the bulk.
Upon adding interactions to a partially filled surface

band—even when these are made very flat by tuning
hopping parameters—we argue that interactions do not open
a gap for thick slabs, due to a leakage into the bulk along
“soft" lines related to projections of remnant Weyl nodes.
However, in thin slabs we find a plethora of possible
fractionalized phases, some of which were discovered earlier
[33,34] with the implicit assumption of subcritical interlayer
tunneling. Most prominently, we provide evidence for a first
non-Abelian fermionic fractional Chern insulator (FCI) in a
C > 1 band, namely a C ¼ 2 generalization of the Moore-
Read quantum Hall phase [35]. Our work thus gives a
unifying and fresh perspective on the intriguing combination
of fractionalization and topological surface localization
impossible in strictly two-dimensional systems.
Setup.—Our tight binding model on N kagome layers,

Km, alternating with N − 1 triangular layers, T m [30]
(Fig. 1), considers spinless, spin-orbit coupled, fermions
with interlayer hopping amplitude t⊥ and kagome layer
(next) nearest hopping amplitudes t1 � iλ1 (t2 � iλ2),
where the −ðþÞ sign applies for (anti-)clockwise hopping
with respect to the hexagon on which it takes place.
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Time-reversal symmetry is absent, e.g., due to an orbital
field or spontaneous ferromagnetism.
Band structure and surface wave functions.—

Independently of the form of the Bloch states of a single
kagome layer, three bands of theN-layer system are exactly
described by

jψ iðkÞi ¼ N ðkÞ
XN
m¼1

ðrðkÞÞmjϕiðkÞim; ð1Þ

where jϕiðkÞim, i ¼ 1; 2; 3 are the single layer Bloch states
localized toKm andN ðkÞ ensures proper normalization. The
coefficients rðkÞ are determined by demanding that the
amplitudes for hopping to the triangular layers vanish by inter-
fering destructively (Fig. 1): rðkÞ ¼ −½ϕi

1ðkÞ þ ϕi
2ðkÞþ

ϕi
3ðkÞ�=½e−ik2ϕi

1ðkÞ þ eiðk1−k2Þϕi
2ðkÞ þ ϕi

3ðkÞ�, where
ϕi
nðkÞ, n ≤ 3, are the components of the Bloch spinor

for the pertinent state jϕiðkÞi in a single kagome layer, and
k1;2 ¼ k · a1;2. While ϕi

nðkÞ, n ≤ 3, can be analytically
obtained by diagonalizing 3 × 3 Hermitian matrices,
the full Bloch spinor is fully known via ψ i

4mðkÞ ¼ 0,
ψ i
nþ4ðm−1ÞðkÞ ¼ N ðkÞ½rðkÞ�mϕi

nðkÞ for all k; n; m, with

EðkÞ of the states (1) equal to those of the single layer case.
Let us emphasize that, first, the states on the slab are

exponentially localized to either the top or bottom layers,
except in high symmetry cases where jrðkÞj ¼ 1. And
second, if periodic boundary conditions are applied also in
the [111] direction, there are no generic eigenstates of the
form (1), underscoring their surface nature.
In the following, we consider the case of single layer

kagome bands carrying nonzero Chern number [36–38], say
C ¼ 1. Then, the multilayer state (1) has Chern number N:

jψC¼NðkÞi ¼ N ðkÞ
XN
m¼1

ðrðkÞÞmjϕC¼1ðkÞim; ð2Þ

where jϕC¼1ðkÞim is the state localized to Km. The states
(2) play a prominent role in this work, and their corre-
sponding energies are highlighted in bold orange through-
out this work (not shown are the two related states
with C ¼ 0;−N).
Figure 2 illustrates the finite t⊥ transition between

weakly coupled Chern insulators and the Weyl semimetal
regime with linear band touching points described by

HWeyl ¼
X
i

viσiki þ E0ðkÞI; ð3Þ

where σi are Pauli matrices and I is the identity matrix.
Precisely at the transition, the valence and conduction
bands exhibit a twofold degenerate touching at the M
points, which split into three pairs of (nondegenerate) Weyl
cones that travel towards the Γ point where they meet as
t⊥ → ∞. Remarkably, the states (2) are entirely indepen-
dent of the value of t⊥; in each case they describe states
localized to the surfaces perpendicular to the [111] cleav-
age, cut, or growth direction, while at the same time their
interpretation fundamentally changes. Note also that the
dispersion of the states (2) always traverses the Weyl point.
At fixed chemical potential, which may be fixed at

the Weyl node due to stoichiometric considerations, the
states (2) precisely describe Fermi arcs. In Fig. 3 we
illustrate the momentum dependence of the surface locali-
zation of the states (2). Most saliently, we find that the
penetration depth diverges along the lines connecting Γ and
M. Crossing these lines, the localization changes between
the bottom and top surfaces, which is the hallmark behavior
of Fermi arcs. More specifically, a typical Fermi “circle”
splits into six Fermi arcs which switch between top and

FIG. 1 (color online). The pyrochlore slab. The left panel shows
the [111] pyrochlore slab with N ¼ 4 kagome layers (dark blue)
separated by (yellow) sites of N − 1 ¼ 3 triangular layers. A
practical labeling of the 4N − 1 ¼ 15 sites in the unit cell and
the basis vectors, a1; a2, of the Bravais lattice are also indicated.
The top right panel indicates the considered nearest-neighbor
processes. The lower right panel shows the local environment of a
triangular (yellow) site for which the local constraint of destruc-
tive interference directly leads to the surface states (1).
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FIG. 2 (color online). Weakly coupled Chern insulators versus
Weyl semimetals. As t⊥ is increased there is a transition from a
weakly coupled regime to a distinct phase where Weyl nodes
occur on the line connecting Γ and M. In the top left panel we
show the phase diagram in the case of nearest-neighbor hopping
only (we set t1 ¼ −1 throughout) [39]. The other panels show
example band structures with fixed λ1 ¼ 0.5 and varying t⊥ ¼
1; 2; 3 for a slab with N ¼ 300 kagome layers along the crucial
Γ − K −M − Γ path through the projected 2D Brillouin zone
(BZ) (cf. top right inset). Note that, remarkably, the band
highlighted in orange corresponding to the surface states (2),
is independent of t⊥.
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bottom surface six times, whenever the Fermi circle crosses
a Γ-M line (cf. Fig. 3).
In Fig. 4 we go on to show how the state (2) can

smoothly be transformed into a band which is essentially
dispersionless, yet being tightly attached to bulk bands
(for thick slabs). It is important to note that also the latter
regime is described by a Weyl Hamiltonian (3) with a
suitable choice of E0ðkÞ; the essential point is that the
topology is unchanged as long as the band touching is

linear (vi ≠ 0; i ¼ 1; 2; 3), no matter how skewed the Weyl
point is due to the overall constant dispersion E0ðkÞ. In
fact, the Weyl nodes carry a quantized Chern flux and can
as such only be annihilated by merging with an opposite
chirality partner [15]. Furthermore, considering a quasi-
two-dimensional slab, one finds that there is a fairly sizable
region in which the bandwidth is (much) smaller than the
band gap, although to obtain very flat surface bands we
need to include also next-nearest-neighbor hopping (as
done in Fig. 4). Crucially, this holds true for thin slabs both
in the weakly coupled regime studied earlier [30,33,34], as
well as when the bulk is in the Weyl semimetal regime.
Thus, one can consider the flatbands of Refs. [30,33,34]

vestiges of Weyl semimetal surface bands. While t⊥
considered in those works is slightly below the Weyl
semimetal regime, our exact solution (2) reveals that this
distinction is in fact immaterial in thin slabs as long as only
the topological band is concerned.
Projected interactions in the flatband limit.—We now

add interactions to a partially filled surface band with
C ¼ N; for Weyl semimetals with the chemical potential
pinned to the Weyl node in the bulk by stoichiometry, this
may well be relevant to the low-energy physics of quasi-
2D slabs.
The matrix elements of any local interaction (provided it

is uniform throughout the lattice and does not couple
different kagome layers) follows from (2); for a two-body
interaction

VC¼N
k1k2k3k4

¼ VC¼1
k1k2k3k4

� jrðk1Þj2 − 1

jrðk1Þj2N − 1
� � � jrðk4Þj2 − 1

jrðk4Þj2N − 1

�
1=2

×
½r�ðk1Þr�ðk2Þrðk3Þrðk4Þ�N − 1

r�ðk1Þr�ðk2Þrðk3Þrðk4Þ − 1
; ð4Þ

where the band projected interaction Hamiltonian in gen-
eral can be written as

Hint ¼
X

k1k2k3k4

VC¼N
k1k2k3k4

c†k1
c†k2

ck3
ck4

; ð5Þ

where c†k (ck) creates (annihilates) an electron in the state
jψC¼NðkÞi. These expressions generalize straightforwardly
to any local (kþ 1)-body interaction. It is important to note
that both the magnitude and the relative phase factors of the
matrix elements depend nontrivially on N.
Fractional topological phases.—The flatbands in our

model [30] are known to host a series of FCIs in bands
with C > 1: stable Abelian FCIs of fermions at band filling
ν ¼ 1=ð2C þ 1Þ and bosons at ν ¼ 1=ðC þ 1Þ [33] with
non-Abelian phases of bosons at ν ¼ k=ðC þ 1Þ using on-
site (kþ 1)-body interactions [34].
Here, we identify a new FCI at filling fraction ν ¼ 1=3,

which we propose as a candidate for the first non-Abelian
fermionic FCI for C ¼ 2, a generalization of the Moore-
Read quantum Hall state [35]. This is based on its large and

FIG. 3 (color online). Surface state structure and Fermi arcs.
The color scale indicates the inverse penetration depth, ξ−1ðkÞ ¼
logðjrðkÞjÞ of the surface states throughout the 2D BZ for the
same parameters, t1 ¼ −1; λ1 ¼ 0.5, used in Fig. 2. The black
lines illustrate Fermi arcs for a chemical potential set at the Weyl
node for a few t⊥ values. When ξ−1ðkÞ changes sign, the
localization changes between top (red) to bottom (blue) surfaces,
hence splitting the Fermi circle into six spatially disjoint arcs.

FIG. 4 (color online). From Weyl nodes to flat surface bands.
For t1 ¼ −1; λ1 ¼ 0.3; λ2 ¼ 0.2; t⊥ ¼ 2.0, we plot the energy
dispersion for various N and t2 on the path Γ − K −M − Γ
through the BZ. In the left panel we set the number of kagome
layers to N ¼ 100while varying t2. For t2 ¼ −0.3 (top) there is a
clearly visible Weyl node on the line connecting M and Γ. For
t2 ¼ 0 the node is skewed and at t2 ¼ 0.3 it is essentially
flattened while the surface band (bold orange) remains at almost
fixed energy throughout the entire BZ. In the right panel we fix
t2 ¼ 0.3 and reduce the number of layers,N ¼ 30; 10; 5, from top
to bottom, and a sizable finite size gap quickly opens throughout
the entire BZ. The band highlighted in bold orange is that of (2),
carrying Chern number C ¼ N.
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robust ninefold topological degeneracy (Fig. 5), its non-
trivial entanglement spectra [39], as well as its provenance
from a three-body interaction (see [39] for details). We note
that, given the flatband is not located at the bottom of the
spectrum, this state is indeed naturally suited to fermions at
an appropriate density.
Gapless bulk.—Next, we argue that generically, a flat

surface band will not be gapped by interactions for thick
slabs. This happens because of the—topologically stable—
locations on lines in reciprocal space where the states of the
band switch the surface at which they are localized. At
these points, the inverse penetration depth ξ−1ðkÞ ¼
logðjrðkÞjÞ (cf. Fig. 3) vanishes. Matrix elements
VC¼N
k1k2k3k4

involving nfkig momenta on these lines vanish

as ð1= ffiffiffiffi
N

p Þnfkig , reflecting the spatial spread of the wave
functions.
This is borne out by our numerics, where the absence of a

FCI is indicated by an inhomogeneous electron distribution
nðkÞ in reciprocal space, reminiscent of a Fermi surface
(Fig. 6). This is analogous to the compressible states at

high filling fractions in C ¼ 1 bands, where an effective
“hole-dispersion,” EhðkÞ [39], resulting from a particle-
hole transformation, dictates the low-energy physics [41].
In fact, both ξ−1ðkÞ and EhðkÞ correlate rather well with
nðkÞ as illustrated for ν ¼ 1=3 with nearest-neighbor
repulsion, H ¼ P

hi;jininj (Fig. 6, see the Supplemental
Material for details and further examples [39]).
Discussion.—In this work, we have unraveled a striking

connection between seemingly distinct frontiers of con-
temporary condensed matter physics by explicitly demon-
strating that flatbands with Chern number C ¼ N appearing
on a slab of pyrochlore [30], and known to harbor a rich
variety of fractional Chern insulators [33,34], are in fact
surface state vestiges of the Fermi arcs of Weyl semimetals
[13]. This result has a bearing in the general context of the
bulk-boundary correspondence in topological matter: while
it has been realized that there can be phase transitions on
the boundary while leaving the bulk intact [47,48], we find
a striking example of the converse situation with a bulk
transition leaving the boundary theory unaffected.
We note that layered structures, albeit with a rather

different alternating normal insulator-strong topological
insulator setup, have been suggested earlier as a possible
platform for Weyl semimetals [14,49]. Weyl semimetals
have also been predicted to occur in pyrochlore based bulk
materials, in particular in A2Ir2O7 (A is a rare-earth
element) iridates [13], for which the existence of remnant
Fermi arc states at certain magnetic domain walls even in
the absence of bulk Weyl nodes was recently suggested
[17]. Given the experimental advantages with finite pyro-
chlore slabs grown in the [111] directions [30–32], as
compared to other oxide interfaces such as perovskite
heterostructures (which may also harbor intriguing flatbands
[50,51]), and the generality of our exact solutions for the
surface states based solely on locality and lattice geometry,
our setup has its distinct advantages even before considering
intricate interaction effects.
The exact solutions (1) and (2) provide a generic recipe

for “engineering” exotic surface states: coupling Chern
insulators with a desirable, e.g., flat, dispersion [52] in a
geometrically frustrated manner results in states with the
same dispersion but with higher Chern number and added
complexity of Fermi arc variety. While we focused on
pyrochlore slabs, this procedure generalizes to other frus-
trated lattices.
We have also explored the effect of interactions in these

bands and identified new fractionalized topological phases as
well as generic gapless states as C → ∞. Our work estab-
lishes that the combined fractionalization and topological
surface localization of the interacting states found here, and
in Refs. [33,34], are impossible in strictly two-dimensional
(isotropic) models just as Fermi arcs cannot exist in purely
two-dimensional band materials. This feature distinguishes
the pyrochlore based FCIs from other C > 1 generalizations
of multilayer quantum Hall states [53–61].

FIG. 5 (color online). Topological degeneracy in the C ¼ 2
bilayer system. (a) The energy spectra of the interaction H ¼P

hi;j;kininjnk interaction projected to the flatband for Ne ¼ 8
and Ne ¼ 10 electrons in lattices with N1 × N2 ¼ ðNe=2Þ × 6
unit cells yielding a filling fraction of ν ¼ 1=3. Each energy
level is labeled by the conserved many-body momentum
(K1; K2). The shaded area indicates the nine quasidegenerate
states. (b) The y-direction spectral flow for eight electrons under
twisted boundary conditions Ψðrj þ N2a2Þ ¼ expðiΦ2ÞΨðrjÞ of
the ground state ΨðrjÞ. The red, green, and blue dots represent
the nine quasidegenerate states in different momentum sectors,
and the gray dots represent the excited states. The parameters
are t1 ¼ −1; λ1 ¼ 0.9; t2 ¼ λ2 ¼ 0.

FIG. 6 (color online). Ground state occupation numbers. nðkÞ
plotted against jξ½rðkÞ�j−1 ¼ j logðjrðkÞjÞj (left panel) and
−EhðkÞ (right panel, cf. Ref. [41]) for Chern numbers C ¼ 2
(blue diamond) and C ¼ 100 (red square) at ν ¼ 1=3. This
illustrates a general trend: nðkÞ is inhomogenous at large C,
while it can remain comparably constant for small C (and ν) [39].
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The present Letter invites a number of interesting
questions regarding the interplay between fractionalization,
surface localization, and translation symmetry. In this
context, it would be particularly interesting to investigate
the effects of lattice dislocations [53,62].
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